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SPECIAL ISSUE

To the 90th Anniversary of Boris Polyak

(May 4, 1935-February 3, 2023)

DOI: 10.31857/50005117925080018

This year commemorates the 90th anniversary of Boris Teodorovich Polyak, a brilliant mathe-
matician and remarkable individual who passed away two years ago.

A pioneer in the theory and methods of optimization in the USSR, he gained worldwide recog-
nition by the mid-1970s and worked for over half a century at the Trapeznikov Institute of Control
Sciences. Polyak’s research interests expanded far beyond optimization problems. He investigated
a diverse range of topics with great enthusiasm, including chaos control, spacecraft stabilization at
Lagrange points, peak effects in differential and difference equations, synchronization of oscillators,
randomized versions of the PageRank problem, and the stability of power grids.

Polyak’s research into mathematical optimization and control theory has exerted a strong in-
fluence on the development of these disciplines and has found applications, often unexpected, in
practical problems.

Among the multitude of his remarkable results, we highlight some of the most prominent ones:

the heavy ball method,

the stochastic approximation method with averaging,

the conjugate gradient method,

nonconvex optimization algorithms under the Polyak—tL.ojasiewicz condition,

adaptive step-size choice in subgradient methods,

the sequential projection method,

the conditional gradient method,

Newton’s method with cubic regularization,

convexity /nonconvexity certificates for quadratic mappings,

results on the parametric robustness of linear systems (including the Tsypkin—Polyak plot),
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698 SHCHERBAKOV

e new versions of random walk methods,
e results on ellipsoidal estimation and the invariant ellipsoid method.

The breadth of Polyak’s scientific purview is well illustrated by the diversity of the journals in
which he published:

Journal of Computational Mathematics and Mathematical Physics, Sbornik: Mathematics, Jour-
nal of Optimization Theory and Applications, Mathematical Programming, SIAM Journal on Con-
trol and Optimization, Theory of Probability and Its Applications, Automation and Remote Control,
International Journal of Robust and Nonlinear Control, IEEE Transactions on Automatic Control,
Automatica, European Journal of Control, Systems and Control Letters, and many others.

Polyak’s personal traits—optimism, genuine humanity, as well as sharp and kind wit—always
attracted colleagues and young researchers. Dozens of his students and their followers are now
productively working at universities and research centers in many parts of the world. Furthermore,
the Traditional Young Scientists School ”Control, Information, and Optimization“ founded by
Boris, has been held with consistent success for over 15 years.

In honor of this anniversary, a special issue of Automation and Remote Control has been pre-
pared. It includes articles by Polyak’s students and colleagues from Russia (Moscow, St. Peters-
burg, Nizhny Novgorod, and Syktyvkar) as well as from England, Spain, Italy, France, and the
United States. The scope of the special issue is exceptionally broad, ranging from classical op-
timization methods to probabilistic set approximations on the one hand, and from network flow
optimization to robust estimation and robust control of linear systems on the other. Despite this
wide range of topics, all of them are connected, in one way or another, to Polyak’s research interests.

With deep gratitude, we list the authors who have kindly agreed to contribute their research to
this special issue, and the reviewers whose expertise has been invaluable:

A. Ablaev, A. Akhavan, I. Akinfiev, T. Alamo, M. Alkousa, M. Balashov, Y. Bekri, R. Biryukov,
S. Boyd, F. Dabbene, P. Dvurechensky, M. Fedotov, A. Gasnikov, O. Granichin, R. Hildebrand,
A. Juditsky, M. Kogan, A. Lukashevich, M. Mammarella, N. Mashalov, V. Mirasierra, S. Nazin,
A. Nemirovski, S. Parsegov, O. Savchuk, V. Sokolov, F. Stonyakin, E. Tarasova, T. Chikake Ma-
pungwana, A. Tsybakov, D. Yarmoshik, and F. Zhang.

Special thanks go to A. Mazurov who put significant effort to translating the submitted manu-
scripts to and from English.

Similar to the 2024 special issue dedicated to Boris Polyak, three articles will be published in
the next issue due to the monthly page limit of Automation and Remote Control.

Editor of the special issue
P.S. Shcherbakov
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A Search Method for Stochastic Non-Stationary Optimization
of Functions with Holder Gradient
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Abstract—We propose a gradient-free method of stochastic optimization with perturbation at
the input which is designed to track changes in the minimum point of a function with Holder
gradient, with observations subject to almost arbitrary (unknown-but-bounded) noise. Similar
methods are widely used in adaptive control problems (energy, logistics, robotics, goal track-
ing), optimization of noisy systems (biomodeling, physical experiments), and online learning
with drift of the data parameters (finance, streaming analytics). The efficiency of the algo-
rithm is tested under conditions that mimic tracking the evolution of human expectations in
reinforcement learning problems based on human feedback when tracking the center of a cluster

of problems in queueing systems. Search methods with input perturbations have been actively
developed in the works by B.T. Polyak since 1990.

Keywords: tracking, input perturbations, randomization, stochastic optimization, gradient-free
methods, reinforcement learning via human feedback, queueing systems, unknown-but-bounded
disturbances

DOI: 10.31857/50005117925080023

1. INTRODUCTION

The problem of minimizing a function (functional) f(z) is at the heart of solving many practical
problems, from control of engineering systems to machine learning. Closed-form solutions are often
not available due to high dimensionality, nonlinearities, or the lack of an explicit form. Even when
the function is defined explicitly, the practical applicability of the existing approaches is limited
by computational resources, measurement inaccuracies, or rounding errors. Traditional iterative
gradient methods are efficient when finding the minimum of smooth or differentiable functions.
However, in real-world problems, situations often arise where computing the gradient is difficult or
impossible. Typically, the objective function is subject to stochastic disturbances, or its explicit
form is unknown. In practice, the optimized function is often defined by some oracle, and by
making requests (function arguments) to this oracle, it is possible to obtain certain realizations.
The availability of measurements of the gradient itself is feasible with the implementation of special
measuring devices for specific tasks or through finite difference approximations, which are inefficient
in the presence of a high-level noise in the obtained measurements. In such cases, alternative
approaches are required that do not rely on the information about gradients.

A significant contribution to the development of the theory and methods of stochastic opti-
mization was made by B.T. Polyak and his research group. Their research covers a wide range of
issues, including gradient methods [1], pseudo-gradient adaptation and learning algorithms [2—4],
and methods for accelerating convergence [5-7]. Even nowadays, the two papers [8, 9] provide
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700 AKINFIEV et al.

comprehensive answers when analyzing the convergence of general-type iterative stochastic algo-
rithms in terms of mean-square deviations, as well as in the linear case in terms of error covariance
matrices.

A new search method of stochastic approximation proposed in the 1990 paper [10] not only
develops the overall direction of random search algorithms [11], but also significantly advances the
entire general theory of iterative optimization algorithms. This paper shows that, if the observed
values of the optimized function are corrupted by noise, the proposed algorithm has the asymptoti-
cally optimal rate of convergence in the sense that it is impossible to find a faster algorithm among
all possible iterative optimization algorithms for a sufficiently broad class of functions. A similar
algorithm was previously proposed in [12], and consistency of estimates generated by it was justified
in the presence of almost arbitrary noise in the observations. In the English-language literature,
similar methods have been called SPSA (Simultaneous Perturbation Stochastic Approximation),
see [13, 14]. A salient feature of these gradient-free methods is that, regardless of the dimensional-
ity of the problem, the oracle needs to be called only once or twice per iteration, with arguments
being chosen over a randomly generated line through the current point (it is what is referred to
as randomization of the algorithm). A detailed analysis of the history of development of search
algorithms of stochastic approximation with perturbation at the input, as well as the properties of
the estimates generated by these methods are provided in [15-17].

A limitation of classical iterative zero-order stochastic optimization methods (those which do
not use the values of the gradient), such as the Kiefer-Wolfowitz procedure [18] in the multivariate
case, is the need to repeatedly compute the function at each iteration. This becomes especially
impractical in dynamical environments where the target function f,(x) changes over time. A similar
situation arises, for example, in optimization problems related to real-time systems. It turned out
that methods like the previously proposed search algorithms of stochastic optimization with input
perturbation remain to be to be efficient in this situation when replacing the decreasing step-sizes
over time with constant ones, [19, 20]. Later, it was possible to formulate and justify the properties
of a distributed algorithm of this type, combined with a consensus algorithm [20].

In practice, [21, 22], statistical uncertainties are often encountered which do not have second
statistical moment. For example, stable distributions, such as Levi—Pareto, are better at describing
the prices of stocks and commodities than Gaussian distributions. In [24], the properties of the
estimates provided by the SPSA algorithm under such conditions were studied. In the present
paper, these studies are extended to the case of optimization of the non-stationary mean-risk
functional.

2. STATEMENT OF THE PROBLEM

We consider discrete time n = 0,1, ..., defined by the label of step (iteration), and we denote
by {E,(-,-): R? x RY — R} the set of functions in two vector variables, which are all differentiable
with respect to the first argument. At every step n, observations

Yn = Fn(xnawn) + vp (1)
are performed at known (chosen) points x,, (experimental design), where the w,s are uncontrollable

disturbances defined over a probabilistic space €2 and having identical unknown distribution P, (),
and v, is the (perhaps non-random) observation noise.

Let F,_1 denote the o-algebra of all random events that have been realized up to the time
instant n; E be the symbol of mathematical expectation; Ex, |, denote the conditional mathematical
expectation relative to the o-algebra F,,_1.

We are interested in the minimization of the following nonstationary mean risk functional:

fal@) =B, Falw,w) = [ Fu(,w)Pu(dw) - min. @)
R4

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025



A SEARCH METHOD FOR STOCHASTIC NON-STATIONARY OPTIMIZATION 701

The goal is to evaluate the minimum point 6, of the function f,(z); i.e., to find
0, = arg H;in fn(x).

Accuracy of the estimate x of the points @, is addressed through use of the scalar Lyapunov
functions

Va(@) = [|lz = 0a]P* = 3 |2 — 507+,
=1

where 0,, are the vectors to be found, and p € (0, 1] is the Holder exponent for the gradients of the
functions V;,(x). In the sequel, we write || - ||,+1 to denote the [,;-norm and (-,-) for the inner
product in R?.

To characterize the behavior of the estimates of the minimum points of the non-stationary
functional (2), we present two definitions.

Definition 1. The sequence én of the estimates of the minimum points 6, is said to be [,11-
stabilized, if there exists C' > 0 such that

~

EV,(6,) < C Vn.

Definition 2. The number L is referred to as the asymptotic upper bound for the estimation
errors in the [,1-norm, if the sequence of estimates {6, } of the minimum points 6,, satisfy

lim EV,(0,) < L < oc.
n—oo
In what follows, we construct the sequence of stabilizing estimates {6, } in the spirit of Defini-
tion 2 under the following conditions satisfied for all n > 0:
(A) The functions f,(-) are strongly convex in the first argument:
(VVa(2), Vfn(z)) = pVi(z).
(B) For all admissible w, the gradients V F,(-,w) satisfy the condition
IVEy(z,w) = VE,(y, w)lly < M|z —yll

for a certain constant M.

(C) The local Lebesgue property: For every point x € R? there exists a neighborhood U, and a
function @, (w) such that E®,(w) < oo and [|[VF, (2, w)||2 < ®,(w) Va' € U,.
(D) The rate of drift of the minimum point satisfies the following conditions:

ar |[|0n — Op1ll1 < A;
alternatively, if {0, } is a sequence of random variables, then

Er, . [0n — 9n—1Hﬁﬁ < Ap+17

b Er, , [|[VaFn(z,w) = VoFyi(z,w)|, < Bllz — On1l17,

¢ Er,, [VaFn(0n, wn)ll51] < C,

d: Bz, _, |Fon(z,wa,) — an_l(x,w2n_1)|p+1 < DVoy,_s(x) + E.
(E) The observation noise v, satisfies the condition

|v2n, — van—1| < o,

or
E]’—Qn—z{‘v2n - U2n—1‘p+1} < 05+1

if it has random nature.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025



702 AKINFIEV et al.

Note that the last condition is valid for arbitrary deterministic bounded sequences {v, }. Condi-
tion (C) allows for interchanging the integration and differentiation operations when justifying the
stabilizability of the estimates. Conditions of the form (D) cover both the random walk drift and
directed drift in a certain direction. For instance, the following condition based on (D) is presented
in [1]:

On = 0p—1+a+&n,

where £, is a zero-mean random variable, and a is trend. Stabilizability of the estimates generated
by the algorithm under conditions (D) shows its applicability to a wide range of problems.

3. A SEARCH RANDOMIZED ESTIMATION ALGORITHM

Assume that the sequence {A,} of trial simultaneous perturbations fed to the input of the algo-
rithm is a realization of a sequence of independent Bernoulli vectors in R? with components being
independent random variables taking values i% with probability 0.5. Let us pick an initial vector

fo € R%. We will estimate the sequence {6,,} of the minimum points by the sequence {f,,} defined
by the following stochastic optimization algorithm with trial simultaneous input perturbations:

é2n—1 = é2n—2
Top = O2p—2 + /BAna Ton—1 = 022 — /BAn (3)
O2n = bon—2 — 3580 (y2n — Y2n—1),

where o and (8 are the step-size parameters. To substantiate the stabilizability property of the
estimates generated by algorithm (3), we adopt yet another assumption:

(F) The random vectors A, and way,wa,—1 are independent of each other as well as of Fp—1. If
{vn} are assumed to have random nature, then A, do not depend on vay,,van_1.

4. STABILIZATION OF ESTIMATES

Denote H = A+ aBM, where A and M are constant bounds on the rate of drift and change of
gradients, respectively.

Theorem 1. Let conditions (A)—(F) be satisfied and let the parameters «, 3 be chosen in such a
way as to guarantee the constant K > 0 defined later in the proof to be less than unity.

Then, for any initial choice 6y with EHéo—OoHpH < 00, the estimates generated by algorithm (3)
are being stabilized in the following sense:

T 2 L P
nh_g}OEHOn - 9n||p+1 < (_> )

where L is also defined at the end of the proof.

Conditions (A)—(C) and (E)-(F) are standard when proving the consistency of estimates gen-
erated by stochastic optimization algorithms with input perturbations; see [18]. Mean-square
stabilizability of the estimates provided by algorithm (3) has been earlier proved in [19] under more
stringent assumptions.

Proof of Theorem 1 and the precise definition of the constants K and L are presented in the
Appendix.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025



A SEARCH METHOD FOR STOCHASTIC NON-STATIONARY OPTIMIZATION 703
5. SIMULATION IN THE RLHF-SCENARIO

In reinforcement learning based on feedback from humans (Reinforcement Learning from Human
Feedback, RLHF), a key challenge is working with noisy and unstable data, [26, 27]. Human evalu-
ations often contain random errors and may change over time, hence complicating the optimization
process. In particular, in tasks related to fine tuning of language models (Large Language Mod-
els, LLM), RLHF is used to improve the quality of text generation, align with user preferences,
and minimize undesirable model behavior. However, the subjectivity and variability of human
evaluations create significant difficulties for traditional optimization methods.

5.1. The Model

In the simulations, we examine the efficiency of the search algorithm under conditions close to
reality; i.e., in the presence of heavy-tailed noise (Pareto distribution) and preference drift ([28, 30]),
which mimics the evolution of human expectations. Three scenarios are considered: Moderate drift,
near-stationary preferences, and stationary preferences with asymmetric noise. This allows for the
assessment of stability and adaptability of the algorithm under RLHF conditions and checking its
applicability to tasks related to LLM training and other systems where human feedback plays a
key role.

The goal of simulations is to test the ability of RLHF agents to adapt to a reward model shaped
from noisy and changing human evaluations. We then

— model heavy-tailed noise (Pareto distribution) describing uncertainty and rare but significant
deviations in estimates;

— introduce a preference drift model that simulates the gradual change in human expectations;

— note that all functions and parameters are formulated in conditions (A)—(F) in Section 2.

Each agent has to minimize the discrepancy between its own estimate of the parameter and
the true value set by the reward model, despite noise and dynamics of target preferences; a search
algorithm is used for the minimization.

The RLHF-based reward model is specified as follows:
Fo(x) = =Y (xi —ap)'™, (4)
i=1

where the target parameter z, drifts in time n as

* * *
Ty =xp_1+0, x5=25,

thus, reflecting a change in preferences.
Choosing z,, from the feedback, we obtain

Yn = Fn(x) + vn,
where v, is noise that models uncertainty in the feedback channel. Two types of noise were used
in the simulations:

— symmetric noise v; = Z; - sgn;, where Z; ~ Pareto(f, o), sgn; ~ Uniform({—1,1});

— asymmetric noise v; = Z;, where Z; ~ Pareto(3,0), which potentially reflects a tendency to
overestimate.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025
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Table 1 presents the basic parameters of the numerical simulation. They cover the structure of
the experiment, settings of the algorithm (so-called hyper-parameters), as well as the characteristics
of noise and drift scenarios, which model feedback instabilities.

Table 1. Parameters of simulations

Parameter Description Value
Agent’s initial estimate Initial point for learning 6y =0
Number of iterations Number of adaptation steps N =1000
Number of runs Amount of independent experiments m = 1000
Hyper-parameters

Adaptation step Conservative step (for stability) ~=0.05
Level of perturbation Amplitude to estimate the gradient ¢ = 0.1
Characteristics of noise
Shape parameter Defines weights of tails B=1.6
Scale Intensity of deviations oc=2.0
Rate of drift Moderate drift 6 =10.01
Near-stationary mode 6 = 0.0001
Type of noise Random deviations Symmetric
Systematic bias Asymmetric

5.2. Simulation Scenarios

To analyze the adaptability of the algorithm, we consider three scenarios:

1.

Moderate drift of preferences (6 = 0.01) and symmetric noise (referred to as noise with sym-
metric distribution). This scenario mimics gradual changes in target parameters in the pres-
ence of random errors in the estimates.

Near-stationary preferences (6 = 0.0001) and symmetric noise. Within this scenario we test
accuracy of tuning under conditions close to stable ones.

Stationary preferences (0 = 0.0001) and asymmetric noise (referred to as noise with asym-
metric distribution). This scenario corresponds to a systematic distortion of feedback; i.e.,
a permanent overestimation.

5.8. Agent Adaptation Process

The agent updates its estimate 6 of the parameter based on the observed values of y (rewards)
obtained from the model. The algorithm follows the iterative scheme described in (3).

Namely, at every even iteration £k =2n, n =1,2,....

1.
2.

The estimate égn_g obtained at the previous even iteration is used (for n =1, éo is used).

A random vector A, of perturbations is generated, with every component independently
taking values +1 or —1 with probability 0.5.

Two points are considered according to (3):

Top = é2n—2 + BA,, Top—1 = éQn—Q — BA,.

. The values of the reward are then observed at the perturbed points: 9, (associated with zay,)

and yo,—1 (associated with x9,_1). These two quantities include both the true value of the
function and the noise; i.e., y, = Fy(2n, w,) + v, in terms of the notation of this paper.
The estimate 0 updates similarly to the formula given by the third line of system (3); however,
with sign 747, since the maximization is performed:

~ ~ «
n n— _An n n—1)-
o < bon_2 + 25 (Y2n — Y2n—1)

At every odd iteration k = 2n — 1, the estimate is being copied: Oop—1 < Bop_o.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025



A SEARCH METHOD FOR STOCHASTIC NON-STATIONARY OPTIMIZATION 705

5.4. Checking Conditions (A)—(F) for Simulations in the RLHF-Scenario
(A) Strong convezity of fn(x).

n

V(%) = =V (x) = = [135(z1 — 25)"%, ..., 1.35(z — x*)0~35r :

VVa(x) = [(p + Dsgn(er — ap)|zr — 23]’ ., (p + Dsgn(zm — a)lem — a5 |]"

(VVa(x), Vfn(x)) = —1.35(p + 1) f: l; — g [PH035,
1=1

Using the inequality |z; — 2 [P+035 > |z; — 2%|PT1a=0% with a < |z; — 27|, we obtain

m m
Z |xl _ x;|p+0.35 > q0-65 Z ‘371 _ xmp-ﬁ-l — CL_O'GSV”(X).
i=1 1=1

Therefore,
(VVn(x), Via(x)) < =1.35(p + 1)a" %5V, (x);

i.e., the condition of the form (VV,,(x),V f,(x)) > uV,(x) holds for u = —1.35(p + 1)a=%%° < 0.
In the minimization of f,(x), the strong convexity condition in the sense of the scalar inequality
above is satisfied with p < 0.

(B) The Hélder continuity of the gradient.
The gradient of the reward function F,(x) writes
V() = 135 (21— 23)°%, .. (@ — 25)°%] .
Then the components of the difference of the gradients have the form
‘(961' . xz)o.% ~ (yi — x:;)o'%’ < M|z — yi|0.35’

0.35

where M’ is the Holder constant, which exist for the function s — s over bounded intervals.

Substitution to the norm gives

m 2
|VEw(2) = VE()II = 1.352 > | (s — @)% — (i — 2)"*|
=1

m
<1352M™ Yy — yil T < MP ||z — y|l37,
i=1
where M? = 1.352M"?m!~97/2 is a generalized constant.
Then we have
IVEu(z) = VE(y)]l2 < Mz — yll5*,

which corresponds to condition (B) with p = 0.35 and M = 1.35M'm?3%.
(C) The local Lebesgue condition.

Let us fix the point x and consider its neighborhood U, = B(x,¢) for some € > 0. Then, for any
2’ € U, we have

m
IVE, (2, w)|5 = 135> [} — x| < 1.35*°mR"7,

=1

where R = sup,¢p, max; | — x| < 0o, and it is finite by the construction of U,.

We then can set @, (w)=1.35,/mR%3> which is independent of w, so that E®,(w) = ®,(w) < co.
Condition (C) is satisfied.
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(D.a) Boundedness of the drift of the minimum point.

Since 0,, = z};1 and =}, = },_,+3, we have ||0,,—0,,_1]2 = ||01]|2 = d4/m. Hence, condition (D.a)
is satisfied for A = 6y/m.

(D.b) Boundedness of change in the gradient.

Let r; = x; — x)_4, then

|0; Fp(z) — 0;Fp—1(x)| < 1.35M/‘5‘0'357

0.35

where M’ is the Holder constant of the function s over the fesible compact.

Summing up over ¢ we obtain
||V33Fn(.7;) - van—1($)||1 < 1.35M’m|5|0'35‘

Denote R = infy g, , ||[& — 6y—1]j1 > 0; then ||z — 6,_1||{ > R”, and condition (D.b) is satisfied
for

_ 1.35M'mg%3°
b= RO0-35

(D.c) Boundedness of the gradient at the minimum point.

Since 0,, = z} 1, we have V,F,(6,) = 0; therefore, |V F, (0, wn)||2ﬁ = 0, so that the condition
holds for C' = 0.

(D.d) Boundedness of change in the function at a step.

m

Foa(m,w) = =Y (zi — a5,
=1
m
B, w) = Fooa(2,w) = (2 — 2o )" = (2 — 2p) ]
=1
‘(317, o x;)1.35 _ (317, o x;_1)1.35 < M/|5|1.35

|Fp(z,w) — Fpp_1(z,w)] < mM'§135.

Since the noise v is subject to the Pareto distribution with parameter 5§ =1.6 > p+1 = 1.35,
the moment of orcler 1.35 does exist, and El|v, — vn_l\’”'l < F < 0. Therefore, for D =0 and
E = (mM'6"3 4 E) condition (D.d) is satisfied:

Ex,, | Fon(®, wan) — Fon_1 (2, wan_1)[PT < DVay,_o(x) + E.

(E) Boundedness of change in the observed noise.
Consider the observation noise v,, defined via the Pareto noise:

Zpsgn,,, symmetric noise,
V. =
" Ly asymmetric noise,
where Z,, ~ Pareto(8 = 1.6,0 = 2.0), sgn,, ~ Uniform{—1,1}.
Condition (E) requires the fulfillment of the inequality
Ez,,_, [Von — von_1 |/t < 0P,

where p+1 = 1.5 < (3; i.e., the moment of order 1.5 does exist.

Since vy, and vq,_1 are independent, the difference vy, — v9,_1 is also a random variable with
finite moment of order p + 1. For the symmetric case (with alternating signs) numerical simula-
tion over 108 realizations results in E |vg,, — vgn_l\l'S ~ 53.73, which allows to admit o5 = 53.73.
Hence, condition (E) is satisfied with explicitly defined constant £ = 53.73.
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(F) Independence of perturbations A,.

By the construction of the search algorithm and the simulations with the RLHF-model, the
vectors A,, are generated to be independent of all exogenous factors. The noise v, is incorporated
afterwards and does not depend on the chosen direction of perturbation.

5.5. Metrics for the Estimates and the Results of Simulations

We use a system of empirical metrics to quantify the behavior of the algorithm under the
conditions of the optimum drift and the presence of noise with heavy tails. These metrics account
for both the accuracy and stability of the estimates and the dynamics of adaptation to changing
conditions. The metrics are selected in such a way as to cover both the steady-state characteristics
of the algorithm and its behavior throughout optimization. This makes it possible to identify the
strengths and weaknesses of the method in various scenarios, from stationary to rapidly changing
and noisy ones.

The assessment of the average accuracy of tracking a drifting parameter on the later stages of
the algorithm is performed through the average absolute error over the last iterations. The stability
of the behavior of the algorithm is determined by the standard deviation of these errors. The range
of fluctuations within a single run is characterized by the average minimum and maximum errors
across runs, which allows for an evaluation of both the achievable potential and worst-case cases.

The dynamical characteristics of the algorithm are reflected in the metrics of the average time to
achieve a given level of accuracy; this provides insight into the rate of adaptation under constraints
on the error. The connection to theoretical definitions of stability is ensured through two moments
of error: The moment of order p, which assesses convergence on average, and the corresponding
asymptotic bound that normalizes the error according to the chosen order of the moment. The
order used is selected based on the noise parameters to ensure the existence of the corresponding
mathematical expectations.

Table 2. Basic metrics of the algorithm

Metrics Expression

1 N—-1 m
Mean absolute deviation over last Mast100 = Toom 0o 2o |Tni — T
100 iterations n=N-100i=1

1 N—-1 m 9
Standard deviation of errors over last Olast100 = || Toom=T 2o 2o (%n,i — Th] — fast100)
100 iterations n=N-100i=1
_ m

Minimum mean deviation over the runs Dpyin = % > ming<p<n [Tni — 5|

i=1
Maximum mean deviation over the runs Dmax = 57 D MaX0<n< N |Tnyi — 5]

s
Il
-

L
= m z:lTi,ev

Mean convergence time to threshold e T.
T,e=min{{n|0<n< Nj|xm —zi| < e} U{N}}

N—1 m
. L 1/2
l,+1-metrics of the estimation error fdef2,last 100 = ﬁ > % (Ia:m - x;|p+1) /
n=N-100

1=

—

The definitions of the metrics are given in Table 2, a comparison of the results for different
metrics is presented in Table 3, and their dynamics are plotted in Fig. 1.
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Fig. 1. Quality of the estimates. Left: Plot of the {,41 estimate of the error as function of the iteration
number n; right: True trajectory of the optimum «}, and its estimate x,, ;.

The results of simulations presented in Table 3 testify to the influence of the environmental
parameters on the performance of the algorithm (based on 1000 experiments, p = 0.50; statistics
for the last 100 iterations is presented). With moderate drift (6 = 0.01) and symmetric noise,
the agent does track the goal, but with a noticeable average error (0.3012), moderate stability
(Std = 0.1682), and rare but significant outliers (maximum 19.7897). High-order metrics take
values 0.1788 and 0.4219, with convergence achieved in 20 iterations.

Table 3. Comparison of the results for different types of drift and noise

Metrics Moderate drift Near-stationary Asymmetric noise
6 =0.01 (symm) ¢ = 0.0001 (symm) ¢ = 0.0001 (asymm)
Stability metrics E[|x — z*|5] 0.1788 0.0524 0.0153
l,+1-metrics of the estimation error 0.4219 0.1954 0.1206
Mean distance E[|z — z*|] 0.3012 0.0520 0.0356
Standard deviation of the estimate 0.1682 0.2776 0.0989
Minimum deviation 0.0002 0.0000 0.0000
Maximum deviation 19.7897 57.1922 10.3462
Convergence time (< 1.0) 20 18 18

Decrease of drift down to 6 = 0.0001 (near-stationary environment) improves the mean error
(0.0520); at the same time it increases instability. Namely, the standard deviation reaches the
value 0.2776, and the maximum error attains the level of 57.19. This indicates an increase in
sensitivity to noise with heavy tails under weakened drift.

The best results were achieved for asymmetric noise under conditions of weak drift. The error
decreases to 0.0356, the variability is bounded (Std = 0.0989), and the maximum deviations are
significantly lower (10.3462). Stability metrics (0.0153, 0.1206) and convergence time (18 iterations)
also improve.

Hence, decrease of rate of drift increases the accuracy; however, robustness to noise depends on
its type. Thus, asymmetric noise implies a better control over extreme errors, perhaps due to the
specifics of gradient estimate. This effect requires further analysis.

6. SIMULATION OF THE TASK DISTRIBUTION SYSTEM
IN QUEUEING SYSTEM PROBLEMS

Queueing systems, such as modern call centers, are characterized by an incoming flow of tasks
having processing times that are often subject to heavy-tailed distributions [31]. This indicates
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the presence of a statistically significant share of tasks that require disproportionately large pro-
cessing times, distinguishing them from systems described by classical exponential or Gaussian
distributions. The Pareto distribution can be thought of as a suitable model for describing such
phenomena [32], since it accounts for rare but lengthy operations which affect the overall perfor-
mance of the system [33].

To efficiently control such queueing systems, one has to adaptively evaluate the characteristics
of the flow and time of service. Below we analyze an application of our stochastic optimization
search algorithm (3) to the model of dynamical tuning the estimated expected processing time for
different types of tasks; see [34] for a detailed description of the model. We use our method to
iteratively optimize the parameters ék, ém, which are adaptive estimates of time of service for each
task cluster m and for the system as a whole, k.

A simulation model of a call center was presented in [34]. Task service time in the model
is generated from the Pareto distribution, with the parameters being calibrated for each cluster
based on the characteristics of lognormal distributions that approximate historical data. The search
algorithm (3) is used to refine the estimates 6y, 0,,, which in turn are used for the assignment of
incoming tasks to agents. The simulation shows the satisfactory performance of the method in the
stochastic environment and heavy-tail nature of the task processing time.

0.1. The Model

We consider a system of agents having identical resources and performance. The load of agent ¢,
denoted by ¢’, corresponds to the number of tasks in its queue. Each task x; is characterized by
type m and the predicted execution time, calculated via the formula

N . A
Tm = o], + (1 — a)@fn, = ]\>7<|7—n|—1‘1’
—t
)\m == Z Im _km o, min,

N kEN, m

where é}c is the individual forecast of agent i for task k, é}n is the average predicted time to
complete tasks of type m (taking local history into account), « is the weight factor that determines
the contribution of the individual forecast and aggregated statistics, and x is the convergence
coefficient. The quantity A, characterizes the accuracy of the model prediction for problems of
type m type and it is corrected when new observations are received. Here, IN,, is the amount of
completed tasks of type m, wy is the weight of the corresponding error, and tg,, is the actual time
to complete task k of type m.

Such a mechanism for calculating predictions and accuracy let the model adapt to the current
quality of forecasts reducing the impact of unreliable data and strengthening the contribution of
accumulated statistics with high confidence.

As a new task xj arrives at step k, it is assigned to the following agent 7y in order to balance
the load of the agents:

QIZC + Tm — Qi

dz‘j +1 ’ (5)

1) = arg min

where ¢/ is the load of agent j, d;; is the “distance” between agents (for example, based on load
or physical location). The agents are connected in a fully connected topology, where each agent
interacts with all the others. This ensures global communication with varying influence of agents
depending on their relative proximity.
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6.2. Description of the Data Set and the Primary Analysis

To demonstrate the efficiency of the developed method, a modeling of the load distribution
system was conducted based on real data from an operator call center for September 2023 (over
2.3 million calls). For each inquiry, we recorded the instant of arrival, response time (wait time),
the actual duration of call (ACD Time), and customer’s segment.

Figure 2 presents two complementary visualizations that reveal the key characteristics of the
incoming flow of some clusters and the human resources potential of the call center. The plot on the
left shows the hourly intensity of tasks over the ten largest clusters, with the peak load observed for
one of the clusters between 10 AM and noon. The plot on the right shows the distribution of active
operators (those who received more than 50 calls in a two-hour interval), with maximum values
occurring between 8 AM and 4 PM. At the same time, the personnel resources do not always keep
up with the sharp fluctuations in incoming traffic. Simulation delays aggregated by time of day
generally replicate the dynamics of the actual wait times, including a morning rise around 8-9 AM
and an evening peak after 5 PM.

The diagrams presented in Fig. 3 display the distribution of conversation durations for 14 client
segments. For the sake of anonymization, all segments have been renamed to numerical identifiers
from 1 to 14 (see Table 4). The greatest variability and extended tails of the distribution are
observed in segments 11 and 13, whereas segment 2 is characterized by an exclusively short duration
range. Segments 3 and 14 also demonstrate a relatively narrow distribution with short medians.
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Fig. 2. Dynamics of load and the personnel time commitment. Left: Hourly intensity of tasks (top
ten clusters); right: Amount of active agents over two-hour intervals.
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Fig. 3. Duration of calls for the top 14 clusters (max ACD = 1200 sec).
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6.3. Results of Simulations

To assess the performance of the proposed method, a simulation of the call center operations
was conducted using real data. The results allowed for the evaluation of both the dynamics of task
wait times throughout the day and the stability of the load distribution. Figure 4 presents the
results of a specific simulation session.
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& 150 £ 10000
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Fig. 4. The results of the simulation model: Analysis of delays in the service. Left: Mean wait time
(20-minute intervals), right: The distribution of wait time (98th percentile).

The plot on the left presents the mean wait time for tasks over twenty-minute intervals showing
a salient peak during work hours associated with high load. The model efficiently adapts to the
changing environment; namely, after a sharp growth of delays at around noon, the mean wait time
quickly decreases due to the redistribution of tasks.

The histogram on the right represents the 98-percentile distribution of the wait times. Most
of the tasks have been processed in less than 50 sec, which corresponds well to the target SLA-
indicators for typical scenarios.

For key clusters, Table 4 presents the values of the predicted processing time z, the amount k of
completed requests, the mean actual time 4,4, and the maximum duration ¢,,,;. Clusters 1 to 14
correspond to those presented in Fig. 3, whereas cluster 0 accumulates all other segments outside of
the top-14. The quantities z are seen to fit well the empirical means, despite the different statistics
for different clusters, which confirms robustness properties of the adaptive prediction based on the
developed search algorithm.

Table 4. Results for different key clusters

0 1 2 3 4 5 6 7
z 143.76  163.14 3.73 174.75  147.62  196.05  159.75  151.75
k 36858 8180 6166 5764 4461 3857 2523 1707
tavg 124.34  158.94 3.71 163.561  135.06  174.91 161.16  157.93
tmax 200 200 200 200 200 200 200 200
8 9 10 11 12 13 14
z 219.63  151.74  321.53  144.92  147.55  191.31 49.54
k 1329 943 906 484 265 223 44
tavg 233.06  153.30  330.74  158.08  156.68  198.90 87.34
tmax 200 200 200 200 200 200 44
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Fig. 5. Hourly load of agents: Comparison of vacant and occupied resources.

The plot presented in Fig. 5 illustrates the hourly workload of operators during the simulation.
During the night and morning hours (until 8 AM), a significant portion of agents remains free;
however, between 9 AM and 3 PM, there is full utilization of all resources: The number of free
agents drops to zero. This coincides with the peak of incoming task flow and stresses the need
for an accurate prediction of the duration of processing. In the evening and at night, the load
gradually decreases, and the system returns to a balanced state.

Overall, the model demonstrates the ability to correctly adapt to the load, ensuring the mitiga-
tion of wait times and an even distribution of tasks throughout the day. The proposed approach
allows for efficient resource utilization under conditions of high variability in requests and can be
recommended for implementation in distributed support systems with intensive and irregular loads.

7. CONCLUSIONS

In this paper we proposed and thoroughly analyzed a method for estimating the minimum of
a functional which varies in time, under conditions where the measurements are subject to noise.
This method is based on the pseudogradient approach with randomization and it does not rely on
the knowledge of the gradient of the objective function and uses a small number of observations
at every iteration. An assumption was made on the boundedness of rate of change (drift) of the
extremum of the functional. It is proved that the asymptotic estimation error is bounded from above
by %, where L and K are found from the properties of the objective function, noise characteristics,
and the parameters of the algorithm. The validity of the theoretical conclusions was confirmed
by the results of numerical simulations which testified to efficient adaptation of RLHF-agents to
noisy and dynamical feedback (in particular, heavy-tailed noise and different preference drift rate).
The experiments showed that the search algorithm ensures the convergence of the estimates to the
target value region.

According to the simulations, the steady-state error and oscillations in the estimates resulting
from noise and drift are consistent with theoretical predictions about the boundedness of the
asymptotic error. Furthermore, the proposed method was tested through simulations based on
real data from an operator call center. Use of empirical characteristics of the flow of requests and
processing times demonstrated reliable applicability of the algorithm in dynamical load distribution
problems and in predicting service parameters in real service systems.
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APPENDIX

Proof of Theorem 1. Denote the estimation error by err, = én —6,.

Step 1: Recursive relation for the estimation error. By algorithm (3) we have

. . «
Oon, = ban—2 — —= Doy (Y2n — Y2n—1),

23
hence,
a
erry, = errey—2 — (B2, — O2n—2) — == Aon(Y2n — Yon—1) -
~—— —

2p

drift,, N
step,,

Step 2: Recursive relation for the estimate of the Lyapunov function V(x). For the vectors a =

égn_g and b = drift,, + step,, we have
Van(f2) = Van—2(fay, — drift,,) = Van—2(a — b) = |la — b — O2,—2|1]

by definition. Using the Taylor series expansion of the function Va,_o(a — b) at the point a in the
direction —b, we obtain

Von—2(a = b) = Van—z(a) = (VVan—2(a — 6b),b), 4 €[0,1], (A1)
noting that the gradient VVa,_o(a — §b) is computed according to
VVon_o(a —db) = (p+1)-sgn(d) © |a — Oa,—2 — 0|7,
where sgng) (6) = 0 or £1 depending on the sign of the ith component of the vector a — 6,2 — db;

|a— 02,2 —0b|P is the vector of the absolute values of the components of a—60s,_2—3b to the power p,
and ©® denotes the componentwise multiplication. The second term in (A.1) can be evaluated as

—(VVan—a(a—0b),b) < —((p+1)-sgn(0) © |a — Oan_s|",b) + 2" 7767 |b]21] <
~(VVan-2(a),b) + 277 |lbllp 1

(see proof of Theorem 1 in [24], p. 93).
Keeping the considerations above and using condition (D.a), we have

Van(02n) < Van—2(B2n—2) — (VVan—2(02n—2), drift,, + step,,) + 2(A7T + HsteanZﬁ). (A2)

Step 3: Expansion of the correcting term. According to the model of observations, represent the
term step,, as the sum

a a
step,, = =4, (F2n($2mw2n) - F2n—1($2n—1,w2n—1)) + —Ap(v2p — v2p—1) -

253 253

almost pseudogradient term noise
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a. Almost pseudogradient term. Denote n® = 2n — % + %

Using the Taylor formula, we first add and subtract the quantity >+ (Vo F« (égn_g, Wy ), BAR),
then the quantity (V,Fo,—2(0an—2, w,+), BA,), and finally (V. Fo,_9(02,—2,w,+), BA,), to obtain

S AP (@t wpr) = > £Fx (Ban_o, wps ) + (Vo Fpt (fon—2 £ 5= BAL, w2 ), BAL)
ni ni

= Z +F+ (éQn—Qa Wyt ) + (Vi Fpx (éQn—Qa Wy ), BAR)

nt
+ <vani (éQn—2 + 5ni/BAna Wy + )7 /BAn> - <vani (é2n—27 Wp+ )7 /BAn>
= Z j:F’nﬂt (éQn—27 wni) + <vxF2n—2(92n—27 wni)a /BAn>

nt
+<va2n—2(é2n—2> Wy + )) BAn> - <va2n—2(02n—27 ’ani), BAn>
+<V$Fni (éQn—% wni>7 /BAH> - <VIF2n—2(92n—2> wni>7 /BAH>
+<vani (éQn—2 + 5ni BAm Wp+ )a BAn> - <vani (éQn—% Wp+ )7 /BAn>>
where 0,+ € [0,1].

Now take the conditional mathematical expectation with respect to the o-algebra Fs,_o. By
condition (F), the vectors A,, are independent of w,,+ and the o-algebra Fs,_o, hence we have

o «
ﬁE}'Qn—Q {An Z tF,+ (0271—27 W+ ) } =0,

nt

since A,, are centered, and

«
ﬁEFQn—Q {An E <vxF2n—2 (0271—27 wni)7 /BATL>} =0,
nt

since Erx,, ,{ViFon—2(0an—2,w,+)} = Vyfon—2(02,—1) by condition (C), and the gradient
of fon—2(-) at the minimum point 6s,_2 is equal to zero.
As a result, by condition (C) we obtain

o

2p

Er,, , { iAn Z +F,+ (xni , ’wni)} = %Van (éQn_Q) + Ex,, ,corry,

20 =
for the almost pseudogradient term, where

corty, = Y (VaFpt (Dan—2 £ 8,2 B, Wyt ), BAR) — Vo Fpt (D2n—2,w, ), BA)

nt
+<vxF2n—2(é2n—27 Wn=+ )7 /BAn> - <vxF2n—2 (02n—27 wni)7 /BAn>
+<erni (éQn—Qa ’ani), /BAH> - <V$F2n—2(é2n—27 ’ani), /BAH>

By conditiond (B) and (D.b), the following estimate holds:

leorra|| < MB?[[An] (214017 + 2016202 = O20-2]1") + 3Bl|f2n—5 — 20 —2]”)
= 2MB° 4 (2 + 3B)||02n_2 — O2n_2]|”-
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b. Noise. Take the conditional mathematical expectation with respect to the o-algebra Fo,_s.
By the independence of A,, on vy, vo,_1 and Fa,_2, we obtain

[0
E}—Qn_z {%An(UQn - U2n—1)} =0.

c. The final estimate of the second term on the right-hand side of Ineq (A.2). By the strong
convexity (see condition (A)), we obtain

N . 1% N
—Ez,, ,{(VVan_2(02n—2), drift,, + step,)} < _#_‘/2n—2(92n—2)

d
,BE}—Q" 2 (van 2(9271 2) drlft + COI‘I‘n> < —%Vgn_g(égn_g)
+2(A 4 aMpr~1h? + (2 + % (2+3B ) Z 1055 — 04,5
a A
< _%V2n—2(92n—2) + eVan—2(f2n2) + c1,
where € > 0 and
1-p
c1=2(A+aMpr 1) et (2 + %(2 + 33)) o

Step 4: Estimate of the third term on the right-hand side of inequality (A.2). Similarly to the
derivations at Step 3 above, the term step,, can be represented as

8
[0
step, = 5500 as
=1

where

e =34 £F i (Oop_o, wyt);

e ay = a3 = (VoF,t (Pon_o £ 6,2 B, wyt), BAR) — (Vo Fopx (on—2, wpt ), BA,);

e ay=as = (VoF,t (Bon_o,wps), BA) — (Vo Fpi (Ops, wys), BAL):;

o ag =ay; = (Vo Fx (0,4, w,+), BA,);

® ag = Vo — Vop_1.
Respectively, we have

o for a;: Ex,, ,|a1P! < D‘/Qn_Q(éQn_Q) + E by condition (D.d);

o for ag,az: Ex,, ,|a;|PTt < MPTLIp%+2 i =2 3, by condition (B);

o for ay, as: Br,, ,lailPt < (MB||fan_o — 0,+]5)P < MPTLBP1A" TV« (Ban_2), i = 4,5,
by condition (B) and Jensen’s inequality;

o for ag,ar: Ex, ,|a;|P™ < C, i=6,7, by condition (D.c);

o for ag: Ez,, ,|as|’™ < of*! by condition (E).

Overall, by Jensen’s inequality we obtain

al 1

=1
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so that
p+1 p+1 p+1 o & SR p+1
24711 4 2B, _, |Istep,|Ih]; < 247*!1 +2.8 25 ; |ai]
_ X 2C + DVap_3(0an_2) + E + o011
< 24PF1 4 920 pH1 2Mp+1(ﬁp+1 +d[)2_1ZVni(92n_2)) I + DV 2(5;27112) + &+ of
nt
< 20" Voo (Ban—2) + c3,
where D
and .
_ P+
c3 = 24,11 + 920 P t1 <2Mp+1(/3p+1 +3. 2pd92_1) i E+ 256);_: Oy )

Step 5: Shaping the recursive inequality for the Lyapunov function. Collecting all estimates ob-
tained above, we arrive at

Von < Von—o — (pad™ — & — caa” ™) Vop_o + €1 + c3.
Introducing the notation
K=1-pad ' +ec+ca’t, L=c+ecs,

we obtain

V2n < (1 - K)V2n—2 + L.

By choosing a and e sufficiently small, the inequality K < 1 can be achieved, which implies the
assertion of Theorem 1. O
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Abstract—We consider an wuncertain linear inverse problem as follows. Given observation
w = Ax, + ( where A € R™*P and ¢ € R™ is observation noise, we want to recover unknown
signal z., known to belong to a convex set X C R™. As opposed to the “standard” setting
of such a problem, we suppose that the model noise { is “corrupted”—contains an uncer-
tain (deterministic dense or singular) component. Specifically, we assume that ¢ decomposes
into ( = Nv, + £ where £ is the random noise and Nv, is the “adversarial contamination”
with known A C R"™ such that v, € AV and N € R™*". We consider two “uncertainty se-
tups” in which N is either a convex bounded set or is the set of sparse vectors (with at most
s nonvanishing entries). We analyse the performance of “uncertainty-immunized” polyhedral
estimates—a particular class of nonlinear estimates as introduced in [19, 20]—and show how
“presumably good” estimates of the sort may be constructed in the situation where the signal
set is an ellitope (essentially, a symmetric convex set delimited by quadratic surfaces) by means
of efficient convex optimization routines.

Keywords: robust estimation, linear inverse problems with contaminated observations, signal
estimation in singular noise

DOI: 10.31857/50005117925080038

1. SITUATION AND GOALS
1.1. Introduction

Since the term was coined in the 1950s, the problem of robust estimation has received much
attention in the classical statistical literature. It is impossible to give an overview of the existing
literature on robust estimation, and we do not try to do it here; for the “classical” framework one
may refer to early references in [39], the foundational manuscript [16], or a recent survey [41].!

In this paper, our focus is on robust estimation of a signal from indirect linear observations.
Specifically, suppose that our objective is to recover a linear image w, = Bz, of unknown signal x,,
known to belong to a given convex set X C RP, given B € R?*P, A € R™*P_ and a noisy observation

w=Az, +n.+£€R™ (1)

of x,, perturbed by a mixed—random-and-deterministic noise & + 7,. Here £ is the random noise
component, while 7, is the “adversarial” deterministic noise. Recently, this problem attracted much
attention in the context of robust recovery of sparse (with at most s < p nonvanishing entries)
signal x,. In particular, robust sparse regression with an emphasis on contaminated design was

1 An important contribution to the development of robust statistics has been the line of work on distributionally
robust algorithms of stochastic optimization and system identification by B. Polyak and Ya. Tsypkin, see [31-36].
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investigated in [1, 5, 9, 25, 29]; methods based on penalizing the vector of outliers were studied
in [7, 13], see also [3, 37]. We refer to the monograph [8] for the description of the present state
of the art.

In this paper, our emphasis is on rather different assumptions about the structure of the signal x,
to be recovered and on the contamination 7, what precludes direct comparison with the cited results.
Namely, we assume that the set X of signals is an ellitope—a convex compact symmetric w.r.t.
the origin subset of RP delimited by quadratic surfaces.? Our interest in ellitopes is motivated
by the fact that these signal sets are well suited for the problem of estimating unknown signal x,
from observation (1) in the Gaussian no-nuisance case (7. = 0, £ ~ N(0,0%1,,)). Specifically, let

us consider linear estimate Wy, (w) = ngw and polyhedral estimate Wyoly(w) = BZpoly(w) where

Tpoly (w) € Argmin | GLoy (Az — w)]|oo
TEX
of w,. Let X be an ellitope, and let the estimation error be measured in a co-ellitopic norm ||-|| (i.e.,
such that the unit ball B, of the norm |||« conjugate to ||-|| is an ellitope). In this situation, one can

point out (cf. [17, 19, 20]) efficiently computable contrast matrices Gy, € R™*? and Gpoly € R™*™
such that estimates Wi, (-) and Wyely () attain nearly minimax-optimal performance.

We suppose that the adversarial perturbation 7, has a special structure: we are given a “nuisance
set” N/ € R" such that v, € N and a m x n matrix N such that n, = Nv,. We consider two types
of assumptions about A: N is either 1) a (nonempty) compact convex set, or, more conventionally,
2) N is the set of sparse disturbances (with at most s < n nonvanishing components). Our focus is
on the design and performance analysis of the “uncertainty immunized” polyhedral estimate w(w)
of w, = Bz, in the presence of the contaminating signal, and solving the problem in the first case
leads to a “presumably good” solution for the second.

We would like to emphasize the principal feature of the approach we promote: in this paper,
A, B, and N are “general” matrices of appropriate dimensions, while X and N are rather general
sets. As a consequence, we adopt here an “operational” approach® initiated in [10] and further
developed in [18-20, 22], within which both the estimates and their risks are yielded by efficient
computation, rather than by an explicit analytical analysis, seemingly impossible under the cir-
cumstances. The term “efficient” in the above is essential and is also responsible for the principal
limitations of the results to follow. First of all, it imposes restrictions on the structure of the set
of signals of interest and on the norm quantifying the estimation error. As it is shown in [20], the
maximum of a quadratic form over an ellitope admits a “reasonably tight” efficiently computable
upper bound, leading to tight bounds on the risk of linear and polyhedral estimates when the signal
set is an ellitope. Furthermore, while in the case of convex compact set A of contaminations, con-
structing risk bounds for the polyhedral estimate W (w) associated with a given contrast matrix G
is possible under rather weak assumptions about the nuisance set A/ (essentially, the computational
tractability* of this set is sufficient), the fundamental problem of contrast synthesis—minimizing
these bounds over contrast matrices—allows for efficiently computable solution only when N is
either an ellitope itself, or is a “co-ellitope” (the polar of an ellitope).

To complete this section, we would like to mention another line of research on the problem of
estimating signal z, from observation (1) under purely deterministic disturbance (case of £ = 0),

2 See [20, Section 4.2.1] or Section 1.3 below; as of now, an instructive example of ellitope is an intersection of a
finite family of ellipsoids/elliptic cylinders with a common center.

3 As opposed to the classical “descriptive” approach to solving the estimation problem in question via deriving and
optimizing, w.r.t. estimate parameters, closed-form analytical expressions for the risk of a candidate estimate.

4 For most practical purposes, computational tractability of a est means that we can model the set constraint
using the CVX [15]. For an “executive summary” of what these words actually mean, we refer the reader to [20,
Appendix A].
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the standard problem of optimal recovery [26, 27] and guaranteed estimation in dynamical systems
under uncertain-but-bounded perturbation [6, 12, 14, 23, 24, 28, 38]. The present work may be seen
as an attempt to extend the corresponding framework to the case in which both deterministic and
random observation noises are present.

Organization of the paper. We introduce the exact statement of the estimation problem to be
considered and the entities that are relevant for the analysis to follow in Section 1.2. Analysis and
design of the polyhedral estimate in the case of uncertain-but-bounded contamination are presented
in Section 2. Then in Section 3 we describe the application of the proposed framework to the case
of (unbounded) singular contamination using the sparse model of the nuisance vector. Finally, we
recall some results on £; recovery used in the paper in Appendix.

Notation. In the sequel, order relations between vectors are understood entry-wise; e.g., t > t’ for
t,t’ € R™ means that vector ¢ — ¢’ has nonnegative entries. [A; B] and [A, B] stand for vertical and
horizontal concatenation of matrices A and B of appropriate dimensions. We denote S™ the space
of symmetric m x m matrices, S'" denotes the positive semidefinite cone of S; notation A = B
(A > B) means that matrix A — B is positive semidefinite (respectively, positive definite). In what
follows, for a nonempty compact set Z ¢ RY

0z(C) == max (Tt

ZEZ

is the support function of Z. We denote n[G] the maximum of Euclidean norms of the columns of
a matrix G.

1.2. The Problem

The estimation problem we are interested in is as follows:

Recall that we are given observation (cf. (1))
w=Ar,+Nv, +£€R™ (2)

where
e Ne R™"™ A e R"™P are given matrices,
e v, € R" is unknown nuisance signal, v, € N, a known subset of R",
e 1. is an unknown signal of interest known to belong to a given convex compact set
X C R? symmetric w.r.t. the origin,
e { ~ P is a random observation noise.
Given w, our objective is to recover the linear image w, = Bz, of x,, B being a given
q X p matrix.
Given € € (0,1), we quantify the quality of the recovery @(-) by its e-risk®

Risk.[@w] = inf {p: Probep {¢ : |Bry —w(w)|| > p} <e V(i € N and 2, € X)}

where || - || is a given norm.

Observation noise assumption. In the sequel, we assume that the observation noise £ is sub-Gaussian
with parameters (0,021,,), that is,

T 1
B {¢"'} < exp (507013 )

® The e-risk of an estimate depends, aside of ¢ and the estimate, on the “parameters” || - ||, X, N; these entities will
always be specified by the context, allowing us to omit mentioning them in the notation Riske[].
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1.8. FEllitopes

Risk analysis of a candidate polyhedral estimate heavily depends on the geometries of the signal
set X and norm || - ||. In the sequel, we restrict ourselves to the case where X and the polar B, of
the unit ball of || - || are ellitopes.

By definition [17, 20|, a basic ellitope in R™ is a set of the form
X={zeR": 3, teT: 2 "Tiw<t, <L}, (3)

where T, € S*, T, = 0, Ty > 0,and T C Ri is a convex compact set with a nonempty interior
which is monotone: whenever 0 <t <t € T one has ¢ € 7. An ellitope is an image of a basic
ellitope under a linear mapping. We refer to L as ellitopic dimension of X.

Clearly, every ellitope is a convex compact set symmetric w.r.t. the origin; a basic ellitope, in
addition, has a nonempty interior.

Examples.
A. Bounded intersection X of L centered at the origin ellipsoids/elliptic cylinders {z € R™:
w1 Tyx < 1} [T, = 0] is a basic ellitope:

X={zeR":3teT :=[0,1F: 2TTyx <ty £ <L}

In particular, the unit box {x € R" : ||z||o < 1} is a basic ellitope.
B. A || - ||,-ball in R™ with p € [2,00] is a basic ellitope:

{zeR": |z, <1} =Rz:HeT={teRL, |t <1}: 27 <ty {<n
T Tyx
Ellitopes admit fully algorithmic “calculus”—this family is closed with respect to basic operations
preserving convexity and symmetry w.r.t. the origin, e.g., taking finite intersections, linear im-

ages, inverse images under linear embedding, direct products, arithmetic summation (for details,
see [20, Section 4.6]).

Main assumption. We assume from now on that the signal set X and the polar B, of the unit ball
of the norm || - || are basic ellitopes:®

X={zcR":3FtecT 2Tz <
B.={ycR1:3scS:y"Spy < s, <L} (4b)

where T C Rf , S€ Ri are monotone convex compact sets with nonempty interiors, T >~ 0,
Yl >=0,S>=0,and >, S, > 0.

2. UNCERTAIN-BUT-BOUNDED NUISANCE

In this section, we consider the case of uncertain-but-bounded nuisance. Specifically, we assume
that A/ C R" is a convex compact set, symmetric w.r.t. the origin, and specify 7(-) as the semi-norm
on R™ given by

m(h) = sgp{(Nu)Th: u EN}.

5 The results to follow straightforwardly extend to the case where X’ and B. are “general” ellitopes; we assume them
to be basic to save notation.
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2.1. Bounding the e-Risk of Polyhedral Estimate

In this section, a polyhedral estimate is specified by m x I contrast matrix G and is as fol-
lows: given observation w (see (2)), we find an optimal solution Zg(w) to the (clearly solvable)
optimization problem

121i31{\|GT(Ax+N1/—w)||OO: ace)(,ye/\/'}. (5)
Given a m x I matrix G = [g1,...,91], let Z¢[G] be the set of all realizations of ¢ such that
€lil <o4y/2In 2[/6 llgill2, Vi< (6)
= %(e
Note that
Probe s6(0,021,,) 1§ € Ze(G)} < e. (7)

Indeed, we have E;¢ {eWTé} < 6%72“9”3"2, implying that for all a > 0,

. 1 1
Prob{g"¢ > a} < inf exp {572“9\@02 - va} = exp {—§a202\|g||§} :

so that
#*(e)

Prob {3 < 1: |gf €] > s(e)lloill} <2Iexp{— 507 [ <€

Given a m x I contrast matrix G = [g1,...,gr], consider the optimization problem
Opt[G] = min {fG(A,u,v) A0, 4=0,720, (8)
7/’117
> XS | B -
;BT ‘ S Ty + AT [Zi %‘gigﬂ Al

where
with

¥[G] = maxr(g) + (en(C]
Proposition 1. Let (A, i1,y) be a feasible solution to the problem in (8). Then
Riske [@G] < fG()\a 22 7)7

i.e., the e-risk of the estimate Wg is upper bounded with fa(\, w,7y).

Proof. Let us fix £ € E[G], . € X, and n. € N. Let also Z = Zg(w) be the z-component of
some optimal solution [Z;7], 7 € N, to (5) and, finally, let A =% — x,. Observe that [z,v] =
[z«,vs] is feasible for (5) and ||GT[Az. + Nvi — w]lloo = |GT€¢|l0o < #(e)n[G], implying that
|GT[AZ + N7 — w]|lso < 5(€)n[G] as well. Therefore,

|GT AA s < 25(emlG) + [GTN[D — 1] o
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Taking into account that 7, v, € N, we have ||GT N[D — v4]||oo < 2max; 7(g;), and we arrive at
T ANl < 20[G), i =1, . 9)

Now, we have A € 2X, that is, for some t € T and all k it holds ATT,A < 4t;, and let v € By, so
that for some s € S for all £ it holds v7 Syv < s;. By the semidefinite constraint of (8) we have

ZA@S@ Zﬂka
¢ k
<Y Nese + 4wt + D 7i(gF AA)?
‘ k i

< 050 + 40700 + (ol AL

oI BA <o v+ AT

A+ [AATY " igigl AA

< ¢s(A) + 47 (p) + 4% G Z%

Maximizing the left-hand side of the resulting inequality over v € B,, we arrive at ||[BAJ <
fG(Aa , 7) . O
Note that the optimization problem in the right-hand side of (8) is an explicit convex optimiza-
tion problem, so that Opt[G] is efficiently computable, provided that ¢s, ¢7 and 7 are so. Thus,
Proposition 1 provides us with an efficiently computable upper bound on the e-risk of the polyhe-
dral estimate stemming from a given contrast matrix G and as such gives us a computation-friendly
tool to analyse the performance of a polyhedral estimate. Unfortunately, this tool does not allow
to design a “presumably good” estimate, since an attempt to make G a variable, rather than a
parameter, in the right-hand side problem in (8) results in a nonconvex, and thus difficult to solve,
optimization problem. We now look at two situations in which this difficulty can be overcome.

2.2. Synthesis of “Presumably Good” Contrast Matrices

We consider here two types of assumptions about the set N of nuisances which allow for a
computationally efficient design of “presumably good” contrast matrices. Namely,

1) “ellitopic case:” N is a basic ellitope;
2) “co-ellitopic case:” the set NN = {Nv : v € N'} is the polar of the ellitope

Ne={weR™: FeR:w' Rjw <Fj,j < J}
[ Rj >0, Zj Rj ~0; R C R/ , intR # (), is a monotone convex compact

Note that N, is exactly the unit ball of the norm 7(g) = max,cn g’ Nv.

2.2.1. Ellitopic case. An immediate observation is that the ellitopic case can be immediately
reduced to the no-nuisance case. Indeed, when N is an ellitope, so is the direct product X = X x N.
Thus, setting A[z;v] = Az + Nv, B[z;v] = Bz, observation (2) becomes

w= A%, + &, [Ty = [14; 4] € X

and our objective is to recover from this observation the linear image w, = Bz, of the new signal T,.
Design of presumably good (and near-minimax-optimal when & ~ N(0,021,,)) polyhedral estimates
in this setting is considered in [20]. It makes sense to sketch the construction here since it explains
the idea used throughout the rest of the paper.
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Thus, consider the case when N' = {0}, and let the signal set and the norm || - || still be given
by (4). In this situation problem (8) becomes

Opt[G] = min {qbs(A) +dp7(p) + 47 (*[G]Y it A= 0, p=0,7>0, (10)
> eS| +B

7#7
=0p.
BT ‘ S Ty + AT [Zi %gz‘gﬂ A }

Note that when 8 > 0, we have Opt[G] = Opt[#G]. Indeed, (A, u,7) is a feasible solution to the
problem specifying Opt[G] if and only if A, u, #%7) is a feasible solution to the problem specifying
Opt[AG], and the values of the respective objectives at these solutions are the same. It follows that
as far as optimization of Opt[G] in G is concerned, we lose nothing when restricting ourselves to
contrast matrices G with »(€)n[G] = 1. In other words, by setting

0(g) = »(€)llgll2 (11)

and augmenting variables A, u, and v in (10) by variables g;, 6(g;) < 1,7 =1,...,1 (recall that we
want to make G variable rather than parameter and to minimize Opt[G] over G), we arrive at the
problem

Opt =  min {cbsO\) +4p7r(u) +4p: A 20, p=>0,7=0, (12)
> eS| :B

A,u:'yz{gi}vp
=05,
sB" ‘ Sk T+ AT [ 7g:97 | A }

Now, aggregating variables v, g1, ..., gr into the matrix © = 3, 7;9;9] and denoting by T the set
of the pairs (© € S, p) for which there exists decomposition © = 7, ; vigi9) with 0(g;) <1 and
~vi =0, > 7 < p, (12) can be rewritten as the optimization problem

0(g:) <1, > v <p,
5

om=3mg{¢ﬂﬂ+4Wﬂo+@:A>au>0, (13)
’u? 7p
> eS| 3B
0,p) € %, =0p.

Observe that when I > m, ¥ is a simple convex cone:
T={(0,0): 020, p > »2()Tr(O)},

so that (13) is an explicit (and clearly solvable) convex optimization program. To convert an
optimal solution (A*,u*, ©%*, p*) to (13) into an optimal solution to (12), it suffices to subject O*
to the eigenvalue decomposition ©* = 1, vie;el” with ||e;llz =1 and v; > 0, i € {1,...,m}, and
e; =0,v;=0,i€ {m,..., I}, and set gF = »1(e)e;, 7/ = 3?(e)v;, thus arriving at an optimal
solution (A*, p*, {¢7,~! }i<s, p*) to problem (12).

2.2.2. Co-ellitopic case. The just outlined approach to reducing the nonconvex problem (12)
responsible for the design of the best, in terms of Opt[G], contrast matrix G to an explicit convex
optimization problem heavily utilizes the fact that the unit ball of the norm 6(-) (cf. (11)) is a simple
ellitope—a multiple of the unit Fuclidean ball; this was the reason for ¥ to be a computationally
tractable convex cone. Our future developments are built on the fact that when the unit ball of 6(-)
is a basic ellitope, something similar takes place: the associated set ¥, while not necessarily convex
and computationally tractable, can be tightly approximated by a computationally tractable convex
cone. The underlying result (which is [21, Proposition 3.2], up to notation) is as follows:
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Proposition 2. Let I > m, and let WW C R™ be a basic ellitope:

W={weR": IreR: wTijérj,jgj}

{Rj =0,>2;Rj>0; RC R7, intR # ), is a monotone convex compact}

Let us associate with W the closed convex cone’

K={(0,p): IreR: Tr(OR;) < prj,1<j<J,0=0,p=>0}.

Whenever a matriz © € S’} is representable as )_; ’yiwiwz-T with v >0 and w; € W, one has
(@,Z{zl vi) € K, and nearly vice versa: whenever (©,p) € K, one can find ejﬁciently (via a ran-
domized algorithm) vectors w; € W, and reals v; = 0, i < I, such that © =3, vw;w! and and

Z% < 2v21In(4m>J)p.

We are now ready to outline a presumably good” contrast design in the co-ellitopic case. Let us

put R; = —R], j < J,and R~ Fi1 = (E)I and consider the ellitope

W = 2[N. 1 {w: (o) w2 < 1}]
—{weR™: I eR=Rx[0,1]: v Rjw< <J=T+1}, (14)

and let 6(-) be the norm on R™ with the unit ball W. Note that 6(-) = 2max [ (-), »(€)| - ||2],
so that for every G = [g1, .., g1], the quantity ¥[G], see (8), is upper-bounded by max; 6(g;), and
this bound is tight within the factor 2. Consequently, Proposition 1 states that the e-risk of the
polyhedral estimate with contrast matrix G is upper-bounded by the quantity

O—pt[G]:min{gbg(A)—l—élqﬁT( )—I—4{max0 gz} Z%. A>0, 1>0,v=>0, (15)

A,y
- }

and Opt|[G] < Opt|[G] < 20pt|[G]. As in the previous section, the problem of minimizing Opt|G]|
over G can be reformulated in the form (13). A computationally efficient way to get a tight
approximation to the optimal solution of the latter problem is given by the following result.

Let I > m, a =2v2In(4m?J), and let

Ef )\gSg ‘ %B

sB" ‘§h4%7k+fﬂfih%gw?}A

K={(0,p): IreR: Tr(OR;) < prj, 1<j<J, 0 =0, p=>0}

(see (14)). Consider the convex optimization problem

Opt, = min {¢S<A)+4¢T<u>+4ap: A0, 10, (16)
A’u7’77®7p
20 AeSe ;B
(G,p)GK,[ p—- | — =04
LpT | 5, T + ATOA

" This indeed is a closed convex cone—the conic hull of the convex compact set {© = 0: Ir € R : Tr(OR;) < ry,
1<j<Jx{1}.
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Theorem 1. One can convert, in a computationally efficient way, the ©-component O of an
optimal solution to the (clearly solvable) problem (16) into the contrast matrix G* such that

Opt[G7] < v/ min Opt[G] < 2v/amin Opt(G].

In particular, the e-risk of the polyhedral estimate with contrast matriz G* (this risk is upper-bounded
by Opt[G*]) does not exceed 21/aming Opt[G].

Proof. When repeating the reasoning in the previous section, we conclude that Opt := infg; Opt[G]
is equal to

inf {Opt([gl, N E mZaXQ(gZ-) = 1} .

g1,--,91

The latter inf is clearly attained at certain collection gz-+ e g}' with max; 0(gz-+ )=1. Let Gt =
[gf, cen g}r], let AT, /J,+,")/Z-+ , ¢ < I, be an optimal solution to the problem in the right-hand side
of (15) associated with g; = g;", i < I, and let ©F = 3", v [9:][g;]7 and p* = 3,77 We clearly
have
Opt = Opt[G™] = ¢s(A") + 4o7(u™) + 4p™.

Besides this, we are in the case where 6(g) <1 is equivalent to g € W, and therefore, by the
first claim in Proposition 2, (01, p") € K, implying that (AT, u™, 0%, pT) is a feasible solution
to the optimization problem in (16). Due to the structure of the latter problem, for x > 0 the
collection (k= A*, kut, kOT, kpT) is feasible for (16) with the corresponding value of the objective
K ps(AT) + K[pr(uh) + 4ap™]. Tt follows that

Opt, < inf [5~16s(A") + wldér (1) +dap*]

= 2(gs () {47 (1) + dap™])"? < 2/ os (V) [Adr () + 4p7 ]V
<alddr (ut)+4pT]

< Valgs(AT) + 4¢7(uh) + 4p*] = /a Opt.

Finally, let A, 77, ©, 7 be an optimal solution to (16). As (0,p) € K, the second claim in Proposition 2
states that there exists (and can be efficiently found) decomposition © = 3, %,[7,][g]7 with g, € W
(ie, 0(g;) <1), 1 <1, 7; 20, and Y ;7; < ap. The erisk of the polyhedral estimate with the
contrast matrix G = [gy,...,d;] is then upper-bounded by Opt[G]. However, \, 7z, and {7,} form
a feasible solution to the problem specifying Opt[G], and the value of the objective at this solution
is upper bounded with

bs(\) + 467 () + 4[max 0(7,)] D_7; < 6s(N) + 467(7) + 407 = Opt,.

Thus, the e-risk of the polyhedral estimate with contrast matrix G does not exceed

Opt, < VaOpt < Qﬂngn Opt[G]. 0

3. OBSERVATIONS WITH OUTLIERS

In this section, we consider the estimation problem posed in Section 1.2 in the situation where
the nuisance v, in (2) is sparse—has at most a given number s of nonzero entries.
Estimate construction. Let € € (0,1) be a given reliability tolerance. We consider the polyhedral
estimate specified by two contrast matrices H = [h1,...,h,] € R™" and G = [g1,...,91] € R™*!
which is as follows. Given observation w (see (2)) we solve the optimization problem
WL [Nv + Az — w] | < 52(e)||hrlla, k=1,...,n, }

(17)

ming [[v||1: € X, .
o { 9] [Nv + Az — W]l <F(e)llgillz,  i=1,....1
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where

#(c) = 0/2In[2(n + I) /.

Let (7,7) = (V(w),Z(w)) be an optimal solution to the problem when the problem is feasible,
otherwise we put (7,z) = (0,0). Vector

Wa,H(w) = BZ(w)

is the estimate of w, = Bz, we intend to use.

3.1. Risk Analysis
Let us denote Z.(G, H) the set of realizations of £ such that
heél <sz(e)lnllz, k=1,...on, g/ &l <7(e)|gill2, i=1,....1, VE€E(G H).  (18)
For the same reasons as in (7), one has
Probe.sg(0,021,,)(Ze(G, H)) > 1 — €.

Let us now fix z, € X, s-sparse vy, and £ € Z(G, H), so that our observation is w = Az, + Nv,+¢&.
A. By (18) we have |h]¢| < 72(e)||hg|l2 and |g] €] < 72(€)||gil|2 for all k < n and i < I, while (17)

becomes the problem
[N[v—vi]+ Az — 2]
[N[v—vi]+ Alx — 2]

¢l
¢l

We conclude that (v,x) = (v4; x4) is a feasible solution to (17). Thus, we are in the case where U, =
are feasible for (19), and

. I -
n;,;n{nunl: vex, ) (19)

()| hkll2, k= 1,...,n,}
e

<
<7z()|gill2, i=1,...,

[l < [l
B. Assume from now on that (H, | - |~) satisfies Condition Quo(s,x) of Section 3.5 with x < 3,
that is,®
K
[wloo < [T Nwlloo + ~flwlly ¥w € R™. (20)

Since U and 7 are feasible for (19), we have
|hk IN[Z — ] + Alz - 2] = €]| < 52(e)||hill2, VE < n

Invoking (18) and the fact that A[Z — z,] € 2AX (since X is symmetric w.r.t. the origin), we
conclude that

[HTN = e < e ()| + 2mas 1] A

and besides this, v, is s-sparse and ||7||; < ||v«][1. Now Proposition 5 with v, in the role of v implies
that
1
17 = valle < 2 max [52(6) [l + 2max (BT 4], 1< q< 21
= 9k Tk [ kll2 vex |k }’ S 4509 (21)

8 Condition Qo (s, %) is the simplest (and the most restrictive) member of the family Qq(s, k), ¢ € [1, oc] of conditions
used to establish the properties of ¢i-recovery of sparse signals. The property of this condition crucial here is that
it can be efficiently verified. We refer to [20, Section 1.3] for the discussion of efficiently verifiable conditions in
sparse recovery and their relation to other conditions used (Restricted Isometry Property (RIP) [4], Restricted
Eigenvalue (RE) [2], Mutual Incoherence (MI) [11], and Compatibility [40]).
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in particular, that

[~ velle < g (| + 21 Al | = o, (22a)
N 2s _
7= vl < g e () |+ 2mae [0 Aa] | = 2591 (22b)

In addition, [20, Proposition 1.10] states that the set H of the pairs (H, k) with m X n matrices H
satisfying Condition Q. (s, k) is the computationally tractable convex set

H={(H,r) e R™" xR |[I, - NTH;j| < 57"k, 1 <i,j <n}. (23)

C. Since v and 7 are feasible for (19), we have
l9; (N[ =] + Alg — 2] = )| <F(ellgill2, i=1,....1,
while |g7 €| < 72(€)]|gi]|2 Vi due to & € Z(G, H). We conclude that
|97 Alz — 2.]| < 252(€)l|gillz + 9] N7 —w]l, i < 1. (24)
Let ||z]|g,1, 2 € R™, be the sum of min[k, n] largest magnitudes of entries in z; note that || - || 1 is

the norm conjugate to the norm with the unit ball {u : ||ul|ec < 1,||ull1 < k}. Consequently, (22)
implies that

|9 N[V — v]| < p|IN" gill2s,1, (25)
and, therefore, by (24)
o7 AlE — ]| < wrlC, n[C) = max [22(0)gill2 + pr|N " gill2s,1). (26)
Let

fom(\ . 7) = 6s(N) + 467 (1) + VEIG] D%,

and let us consider the optimization problem (cf. (8))

Opt[G? H] = ?1‘}% {fG,H()\aM>7) :

> AeSe | B
BT ‘ Sk kT + AT [Zi %'gigﬂ A

Az20, p=0,v20,

- 0.} (27)

Applying the same argument as in the proof of Proposition 1, with (26) in the role of (9), we arrive
at the following result:

Proposition 3. In the situation of this section given k € (0,1/2) and m x n matrizc H satisfying
(H,k) € H, see (23), let (A, p,7y) be a feasible solution to (27). Then

Riske[Wa, i) < fa,m (A, 1, 7).
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3.2. Synthesis of Contrast Matrices

Our present objective is to design contrast matrices H and G with a small value of the bound
Opt[G, H] for the e-risk of the estimate Wg .

D. Building the contrast matrix H € R™*"™ is straightforward: the risk bound Opt[G, H], depends
on H = [hy,...,hy,] solely through the quantity

ot = max |32() [l +2maxuh£Ax||oo]
rxeX

1 — 2K k<n

and is smaller the smaller is py. For a fixed x € (0,1/2), a presumably good choice of H =
[h1,...,hy] is then given by optimal solutions to n optimization problems

hj, = argmin {7(6)Hh||2 + Qma))(( [T Az||oo : B € R™, ||Coli[I, — NTh]||s < 3_1/1} (28)
h €
which, when recalling what X is, by conic duality, are equivalent to the problems

hi, = argmin {?(G)Hhﬂz +u+ér(): heR™ x>0,

h,v,x
v | KhTA
ATh ‘ Ek Xka

=0, |Coli[I,, — NTh]|la < s—lm}, L <k<n.

E. The proposed construction of G is less straightforward. We proceed as follows. Let G = [G1, G2]
where Ga,G; € R™*™ (so that I = 2m).

E.1 Notice that as £ € E.(G, H), problem (19) is feasible, and (Z,7) is its feasible solution. For a
column g of G, by the constraints of the problem, we have

9" Az — @.]] < 252(e)l|gll2 + lg" N7 — ]| < 252(e)llgll2 + 2spa N glloc, (29)
we have use an , Implying that
h d (24 d (25)), implyi h
~ 2 _ )
(97 A[E — 2.])* <2 (52%(0) 1913 + 452} INTgl%), i=1,....m. (30)

Note that the set
M ={geRm™: 872(e)|gll3 + 8520} INT g% < 1}

is an ellitope: when denoting N = [ny,...,n,| we have

M = {g ceR™: Ire(0,1]": ¢g" (8?2(6)1771 + 882,0%{11]11?) g<rj,j= 1,...,n}.

M;

E.2 Next, observe that when £ € Z.(G, H), by (21) one has

N 2s T
_ < 7 — .
9= wella < 12 ma 202 + max [hF Al | = vVEspu

Then by (29), for a column g of G it holds

2 2 2
(Al - z.])” < (22(9)llglla + 19" NP — v.)l)” < (2(€)lgll2 + V25pu | NTg]l2)
<gr (872(6)Im + 43,0%{NNT> g. (31)
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Now, let us put

Q = (8572%(e) I, + 4spyy NNT) /2, (32)
and consider the optimization problem
Opt= min < fg(\,01,02,p): A>0, 1 >0,0; =0, Oy =0, (33a)
)\7/»1«7@1,@2717
. Ze )\[Sg ‘ %B
Tr(M;01) <p, j=1,...,n, =0
(M) <2 $BT | S mTr + AT (614 Q0:Q7)A
where
Fi (0 101,03, p) = 6s(N) + 467 (1) + Tr(O3) + 2v2 In(dm?n)p. (33b)

Note that the constraints on ©; and p of the problem (33a) say exactly that (©1, p) belongs to the
cone K associated, as explained in Proposition 2, with the ellitope M in the role of W.

Theorem 2. Given a feasible solution (X, u, 7,01, 02) to (33), let us build mxm contrast matrices
G1, Go as follows.

o To build Gy, we apply the second part of Proposition 2 to ©1,p, M in the roles of ©,p, W, to
get, in a computationally efficient way, a decomposition ©1 = > 1" yiglﬂ;gf,; with g1, € M
and v; =0, 3 v < 2v/2In(4m?n)p. We set G = 91,15 91,m)-
e To build Ga, we subject Oy to eigenvalue decomposition Oy = I'Diag{x}I'T and set Gy =
(92,1, 92.m] = QT.
Note that ©1 + QO2Q = Z,J %glig{i + Z,J XiggngT’i.
For the resulting polyhedral estimate Wg g and for all x, € X, s-sparse v, and § € E(G, H) it
holds
|0 H(Az. + Nvs + &) — Bau|| < fu (X, 1, 01,02, p) (34)
implying that the e-risk of the estimate is upper-bounded by fr (A, u, ©1,042, p) (due to & € Z(G, H)
with probability > 1 — €).
Proof. Let us fix z, € X, s-sparse v, £ € Z.(G, H), and let w = Az, + Nv, +&. By A, prob-
lem (17) is feasible, so that (Z,7) = (Z(w),P(w)) is its optimal solution, and @w = BZ is the esti-
mate Wg,g(w). Let A =2 —x,, and let ej,..., e, be the columns of the orthonormal matrix I'.
By construction of G, we have for all j < m (see (31))

(gg’jAA)2 < gQTJ (872(6)Im + 4sp§{NNT> 92,5 = eJT [Q (872(6)Im + 4sp§{NNT) Q} ej = e;‘-Fej = 1.
Furthermore, due to g;; € M one has (see (30))
(91, A0)* < 8522(€)llg |3 + 8% INTgl% <1 Vi <.

Now, by the semidefinite constraint of (33a) and due to ©; + Q02Q =3, %gug{i +> Xigz,ig%ji,
for every v € BB, we have

> NS

Z T | A+ [AA]T [Z Yig1ig1; + Z Xi92,i92 Z] AA
¢

< ¢s(A) + 47 (1) + ZXz‘ 91,7;14A + Z%’ 92,jAA)
i J
[as [vT S1v;... ;0T Spv] € S due to v € B, and [ATTIA;...; ATTLA] € AT due to A € 2)(}

< ¢s(A) +4o7(p +ZX1+Z’Y]\ (A, 1, 7,01,02)

v BA < oT v+ AT
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due to 3,7 < 2v2In(4m?n)p and 3, x; = Tr(©3). Taking the supremum over v € B, in the
resulting inequality, we arrive at (34). O

3.3. An Alternative

Our objective in this section is to refine risk bounds (27) and (33a) to produce more efficient
contrasts. Our course of action is as follows. First, to extend the possible choice of H-contrasts*
responsible” for the perturbation recovery, we refine the bounds (22) for the accuracy of sparse
recovery, notably, to allow using contrasts not satisfying Condition Q. (s, k). Second, we improve
the bounding of the risk of the estimate w(w) by taking into account the contribution of the H-
component of the “complete” contrast matrix [H,G] when optimizing the G-component of the
contrast.

In the sequel, we consider the estimate described at the beginning of Section 3, the only differ-
ence being in the sizes of contrast matrices G and H: now H = [hy,...,hy] € R™M and G =
[g1,- .., 92m]- Thus, in our present setting, given observation w, we solve the optimization problem

\hE(Nv + Az — w)| < 52(e)||hkll2, k=1,..., M,
g (Nv + Az — w)| < 32(e)||g2.ill2, i=1,...,2m,

min {Huul e, (35)

with

#(e) = 0\/2In[(2M + 4m) /],

specify T(w),7(w) as an optimal solution to the problem when the problem is feasible, otherwise
set (Z(w),?(w)) = (0,0), and take Wg g(w) = BZ(w) as the estimate of Bx,.
3.3.1. Risk analysis. The above problem can be rewritten equivalently as

7€) hrll2, B=1,...,M,
_( A2 . } 56)
7Z()gilla, i=1,...,2m,

hi (N[ = v + Alz — 2] - €)]

: |
min< [[v]; : x € X,
v, { 9/ (N[v = vi] + Al — 2] = §))|

NN

and when setting

(37)

hlel <3 (e)|hll2, k=1,..., M,
EE(G,H);:{geRm: €] < 321l }

<
|g7’:T£| < %(G)H.ngQv i = 1> s 72m7

we have
Probg.sg(0,021,,)(Ee(G, H)) > 1 — €.

Let us fix £ € E((G, H) and set w = Az, + Nv, + €. As (U, Z) is a feasible for (36), 7z := Z(w),
v := D(w) is feasible as well, ||V||1 < ||v«||1. Thus, same as in the proof of Proposition 5, for z = v—v,
it holds

1l < 2[|z[ls.1

implying that
12l < 2sl[2lloo,  ll2ll2 < V25][2]|oo- (38)

Now denote A =T — x,, and consider n pairs of convex optimization problems

Opty[i] = max {\/w,;t tv € 2X,

sby

HwHOO < ws, HwH1 < ta t < 28’UJ7;,
WL (Nw + A0)] < 226 il k=1, M
<

Wloo L W;, ||w 2sw;, ]
oo < wi, oy < 25, } i)

Opt|t] = max S w; : v € 2X,
Ptool] mwx{ \hE (Nw + Av)| < 252(€) |hell2, k= 1,..., M
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Observe that a feasible solution (v,t,w) to (Ps[i]) satisfies ||w||co < w; and ||w||1 < ¢, whence
lwll2 < Vit < Optyi]. (39)

Now, let ¢t =, be the index of the largest in magnitude entry in z. Taking into account that
€ € E(G, H) and recalling that A € 2X, we conclude that when z, > 0, (v,t,w) = (A, ||z]|1,2) is
feasible for (P[¢]) and (v,w) = (A,z) is feasible for (Ps[t]), while when z, < 0 the same holds
true for (v,t,w) = (—A,|z|1,—2) and (v,w) = (—A,—z). Indeed in the first case v =A € X,
\WI[AZ + NU — w]| < Z2(e)||hi]l2 and |hL[Azy + Nv, — w]| < 52(€) || hil|2 as both pairs (zZ,7) and
(24, vs) are feasible for (35), implying the second line constraints of (P[i]). Note that we are
in the case of z, = ||2]|0, that is, constraints in the first line of (P[i]) are satisfied for w = z due
to (38). Thus, (A, ||z|l1,2) indeed is feasible for (P[i]). As a byproduct of our reasoning, (A, z) is
feasible for (Px[i]). In the second case, the reasoning is completely similar.

Next, setting
Opty = max Opty[i], Opty, = max Opt[i], (40)
1 1

and recalling that (A, ||z]]1,z) or (—=A,||z||1, —2) is feasible for some of the problems (P[i]), and
(A, z) or (—A, —z) is feasible for some of the problems (Px[i]), when invoking (39) we get for all
£ €E(G,H)

[2]lo0 < OPtog,  [[2]l2 < Opta,  |[2]l1 < 250pty,.

Consequently, for all d € R™
jd" N2| < max {d" Nz : [[2]loc < Optog, 122 < Opta, [l2]l1 < 250ptoc }

= min {[[u]10pty + [v]20pty + 25]|w||ecOPtog, u + v +w = NTd}. (41)

u,v,

=7(NTd)

Now, recalling that Z, 7 is feasible for (36) and that £ € Z.(G, H), we conclude that columns d;,
i=1,...,M +2m of the “aggregated” contrast matrix D = |G, H] satisfy

|di AA] < |dif N2| + |d] €] + 52(€)[lg]l2,

whence
|d;TAA| < T(NTdy) + 2%2(e)||di ||, @ < M+2m. (42)

=:pp(ds)

Next, let us put B
T m,7) = 6s(N) + 407 () + 37t (ds),

and consider optimization problem (cf. (27))

Opt[G, H] = iﬂ;g {fG,HOHMfY) tA=0, p=0,720,

Zf )\gSg ‘ %B
3BT ‘ Se T + AT Y, 'YididiT} A

- 0.} (43)

Applying the same argument as in the proof of Proposition 1, with (42) in the role of (9), we arrive
at the following result:

Proposition 4. In the situation of this section, let (A, u,y) be a feasible solution to (43). Then
Riske [0, 7| X, N] < fa,m (A p,7).
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3.3.2. Contrast matrix synthesis. We continue our analysis of the estimate W¢, i in the situation
when the observation is w = Az, + Nv, + £ with € € Z.(G, H), see (37). By (41), for z =7 — v,
and all g € R™ we have

9" N2| < min {[N"g[20pty, V25| N7 g]20pts, 251N gllocOpta, }

what implies (cf. (42)) that for all i < 2m

67 AA| < 252(9)gill> + min { N7 gi 120ty V25||IN" 91120t 25| N gillocOpb b (44)

Note that the right-hand side in (44) is nonconvex in g, making our design techniques inapplicable.
To circumvent this difficulty, we intend to utilize the following important feature of polyhedral
estimates: one may easily “aggregate” several estimates of this type to yield an estimate with the
risk which is nearly as small as the smallest of the risks of the estimates combined.

Here is how it works in the present setting. We split the m x 2m contrast G into two m x m
blocks Gy = [gx.1,---+9y,m], X = 1,2, and design the blocks utilizing the respective inequalities
inherited from (44), specifically, the inequalities

|91 AA] < 232(6)llgnill2 + 251N 91,4l OPteo,
192 AA] < 272(€)l|gll2 + N7 g2,il|2 min{Opt,, v2sOpt,.}

=02,H
where A =z — z,. We weaken these inequalities to
9T AAR < 7H(g1), mlg) = /S22 (O)llgll3 + 8520t [INT g2
2 2
|93, AN < 75 (g2,0), ) = /872(0)gll3 + 203, [ NTg]3.
Notice that norms 7, x = 1,2, are ellitopic, so we can use in our present situation the techniques
from Section 3.2, thus arriving at an analogue of Theorem 2. To this end, denote by ny,...,n, the

columns of N and set
M, = 83%(¢)I,, + 85*Opti,nn J, j<m, and Q = ( 2(€) I +2Q%7HNNT>_1/2.
Next, observe that the unit ball of 71 (-) is the ellitope
M={weR™:Ire[0, )" w Muw<p;,j=1,.., M}

and the unit ball of w5 is the ellipsoid wTQ w < 1. Now, let us consider the optimization problem

Opt = min {TH(AMUH T7®17 927/)) DA P 07 14 P 07 Tz 07 (458‘)
A\p,7,01,02,p

©1=0,09 =0, Tr(M;01)<p, j=1,...,n,

S S| 1p g
BT | Sy it AT [Simihihf] A+ AT(O1 + Q0:QT)A |

where

Fa\ 1, 7,01,02,p) = ¢s(N) + 4é7 (1 +ZwH ) + Tr(02) + 2v21In(4m?n)p. (45D)

Note that the constraints on ©; and p in this problem say exactly that (01, p) belongs to the
cone K associated, according to Proposition 2, with the ellitope M in the role of W.
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Theorem 3. Given a feasible solution (A, u,T,01,09,p) to (45), let us build m x m contrast
matrices Gy, Go as follows.
o To build G1, we apply the second part of Proposition 2 to (01, p, M) in the role of (0, p, W),
to get, in a computationally efficient way, a decomposition ©1 = > 1", %.g“.ng’i with g1, € M
and v; >0, Y. v < 2v/2In(4m?n)p. We set G = 9115, 91,m)-
e To build Go, we subject Oy to the eigenvalue decomposition ©9 = I'Diag{x}I'" and set Gy =
[92,17 e 792,m] =Qr.
Note that ©1 + QO02Q = 3, Vigu,igi; + > Xig2,i9 ;-
For the resulting polyhedral estimate Wa g and for all . € X, s-sparse vy, and & € Z(G, H) if
holds
@G, 1 (Azy + Nvi + &) — Ba|| < f (A 1, 7,01, 02, p) (46)
implying that the e-risk of the estimate is upper-bounded by frg(\, p, 7,01,02,p) (as £ € Z(G, H)
with probability > 1 — €).
Proof of the theorem follows that of Theorem 2 and is omitted.

3.4. Putting Things Together

Finally, we can “aggregate” polyhedral estimates from Sections 3.2 and 3.3 in the following
construction (cf. [20, Section 5.1.6]):

Let us put

#(€) = o (2In[(2n + 2M + 8m) /€)Y,
and let H = [h1,...,hy] € R™" G = [g1,...,G2m] € R™? and H = [hy,..., hy] €
R™M G = [Gy,...,09,] € R™?™ be the contrast matrices specified according to the

synthesis recipes of Sections 3.2 and 3.3, respectively. We define the aggregated estimate w
of w, as w(w) = BZ(w) where Z(w) is the z-component of

|h£[NV+AJ)— ]|< (6)”th27 kzlaanv
=T
- <7z =1....
(Z(w),P(w)) € Argmin < ||v|1:xz € X, [ [NV + Az — w]| < %(6)Hhk~‘|2’ k=1,...,M,
T |§/ZT[NV+Ax—w]|OO <#=(O)|gillz2, i =1,...,2m,
|§;‘F[NV+Ax—w]|OO <7(6)||g;lle, i=1,...,2m,

when the problem is feasible, and Z(w) = 0 otherwise.
Let us denote G = [é, G| € R™4m et also (X, i, 7) be a feasible solution to the problem (27) with
H = H, and let (X,7,7) be a feasible solution to the problem (43) with H = H. Let fo.mand fo u
be specified in (27) and (43) respectively. From Propositions 3 and 4 it immediately follows that
for every s-sparse v, and every x, € X the error bound

Riske[@()| X, N] < min [ £, 7\ 7). fo 70 7,7)] (47)
holds true.
Note that the resulting estimate can be efficiently optimized w.r.t. all parameters involved,
except for H, by specifying
o IET as (near) minimizer of p[H| over H € H (23),
e G as a result of the decomposition of the (©1, ©2)-component of a (near-) optimal solution to
the problem (33a), (33b) (see Theorem 2) associated with H,

e G as a result of the decomposition of the (01, ©3)-component of a (near-) optimal solution to
the problem (45) (see Theorem 3) associated with H.
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3.5. Numerical Illustration

In our “proof of concept” experiment we compare three estimates of z,: 1) estimate Zyg with
contrast matrix [H,G] computed according to the recipe of Section 3.2, 2) estimate Z;g with
contrast [H,G| = [I,,,G] with G conceived utilizing the synthesis routine of Section 3.3.2, and
3) “aggregated” estimate Z ¢ with combined contrast [H, I,,,, G, G]. We solve adopted versions of
optimization problems in (28) and (33a), (33b) to compute contrasts H and G of the estimate Zp ¢,
and solve (45), to build the contrast G of Z;g. For instance, when computing the contrast G, we
set 32(e) = V2oerfcinv () where erfcinv(-) is the inverse complementary Gaussian error function;
when processing problem (45) numerically, ©; was set to 0; the resulting problem can be rewritten as

P n
Opt:)\min@ )\+4Zuk—|—2'yj—|—Tr(@):A}O,u}(),v}(),@t(),
s k=1 j=1

M, | 1,
1 1~ TT: —1 . - | = 0 (48)
51y ‘ A" ©A + P'Diag{pu}P + A" Diag{y}A

where A= A/py with py = 232(€) + 0,77, the subsequent entries in Pz being 21, [22 — 2z1]/h,
[2i_9 — 221 + 2] /h?, 3 <i<p, and h7: 27 /p. The corresponding risk bounds are evaluated by
computing solutions to (43). Optimization problems involved are processed using Mosek commercial
solver [30] via CVX [15].9
In our illustration,
e m=n=256,q=p=32, N=1I, B=1I, Aisan x prandom matrix with Gaussian entries
such that ATA = I;
e X is the restriction on the p-point equidistant grid on the segment A = [0, 27| of functions f
satistying | £(0)] < 4, |F/(0)] < 1, |f"(8)] <4, t € A;
e the norm || - || quantifying the recovery error is the standard Euclidean norm on R?;
o £ ~N(0,0%I,) with 0 = 0.1, e = 0.05, and s = 8.
Figure 1 illustrates the results of the computation. In each experiment, we compute ng = 100
recoveries Tpa, Trag, and Tgre of randomly selected signals x, € X with generated at random

101 | 110t} —

=== =1 | = = =

S 100 —l— —— 1
/m\HG i'\IG EHIG i/\H D] f/\HI
Fig. 1. Left plot: distributions of || - ||2-errors of recovery of x, and theoretical upper bounds

on Riskg g5 (red horizontal bars); right plot: distributions of || - ||s-errors and theoretical upper
bounds on Riskg g5 of recovery of v,.
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Fig. 2. A typical signal/estimates realization and recovery errors.

sparse nuisances v,. The results are presented in the left plot in Fig. 1. The right plot displays
the boxplots of errors of recovery of the nuisance v, along with the upper risk bound Opt, of (40).
Figure 2 illustrates a typical realization of the signal and the recovery errors; the values of || - ||o-
recovery errors are ||Tpg — Z«|l2 = 1.48..., ||Zrg — z«|l2 = 2.02. .., and ||[ZH1g — z«l|2 = 1.43. ..,

the corresponding [|z.||2 = 72.2....

APPENDIX. Error bound for ¢y recovery

Condition Q (s, k)
Given an m X n sensing matrix N, positive integer s < n, and k € (0,1/2), we say that

m X p matrix H satisfy condition Qso(s, k) if

K
|w]loo < |H Nwl|oo + ~||w|1 Yw € R™ (A1)
s

For y € R™, let y® stand for the vector obtained from y by zeroing our all but the s largest in

magnitude entries.
Proposition 5. Given N and integer s > 0, assume that H satisfies the condition Qoo (S, k) with

Kk < 5. Then for all v,0 € R"™ such that ||D||; < |[v||1 it holds:

Q=

(2s)
1-2k

TNTp [l = v*lx
|H* N[D — |00 + . , 1< g< oo (A.2)

|7 — V”q <

Proof. Let us denote p = [|[HT N[ — v]||o, and let z = 7 — v.
1°. Let I C {1,...,n} of cardinality < s and let I be its complement in {1,...,n}. When denoting

by x; the vector obtained from a vector x by zeroing out the entries with indexes not belonging

to I, we have

17zl = Wl = 7zl < flvlls = lrll = lvell + vzl = el < llzrll + gl

and therefore
27l < 177l + vzl < llzell + 2(lvgl)-

9 MATLAB code for this experiment is available at GitHub repository https://github.com/ail-fr/poly-robust
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It follows that
lzlln = llzrlls + llz7lle < 2|2rll1 + 2[lvzll- (A.3)

Besides this, by definition of p we have
IHT Nzl < p. (A4)
2°. Since H satisfies Qoo (S, k), we have
151 < s HTN2lloo + &1z

where ||z|[s,1 is the ¢;-norm of the s-dimensional vector composed of the s largest in magnitude
entries of z. By (A.4) it follows that ||2||s1 < sp+&l|2]/1 which combines with the evident inequality
llzrll < ||zlls,1 (recall that Card() = s) and with (A.3) to imply that

Izl < 221y + 2[lvglls < 2sp + 2|2][1 + 2([vgl)s,
hence (recall that x < §)

2sp + 2|[vzlh

<
el < 22222

(A.5)
On the other hand, since H satisfies Qoo (s, k), we also have
T K
1lle < [1H” Nzloo + —ll2]l1,

which combines with (A.5) and (A.4) to imply that

k250 + 2]vls
1 -2k

[12]lo0 <

= (1—2r)71 {p + @] . (A.6)

S

We conclude that for all 1 < ¢ < oo,

Q=

Ut 1 2s
lelly < lod < 22

s L] .
S
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Abstract—The computation of probabilistic safe regions remains an evergreen problem in
stochastic settings. Although the exact computation of safe regions may be possible for some
specific problems, the results are generally overly complex (e.g., nonconvex, nonconnected)
making them impractical for real-time applications. In this work, we present a sample-based
procedure to obtain tight inner approximations of the safe region. The proposed approach does
not require any assumption on the underlying probability distribution and the computation
of the inner approximation set can be done offline. Unlike similar approaches, the proposed
pack-based probabilistic scaling includes a tightening constraint, which tunes the level of con-
servativeness of the resulting approximation.

Keywords: randomized algorithms, probabilistic robustness, uncertain systems, statistical learn-
ing theory

DOI: 10.31857/50005117925080049

1. INTRODUCTION

Real-world systems are often not deterministic and subject to uncertainty, necessitating the de-
velopment of robust and stochastic control strategies. In robust control [1-3], the uncertainty
is assumed to be unknown, but confined in a compact region, and the controller is designed
to guarantee constraint satisfaction for all admissible values of the uncertainty. In contrast,
stochastic control [4-6], incorporates probabilistic considerations introducing the concept of chance
constraints [7]. Unlike hard constraints, chance constraints can be occasionally violated, provided
that the probability of satisfaction remains above a specified threshold.

Relaxing the constraints and taking probabilities into account make stochastic schemes less
conservative than their robust counterpart. Moreover, they make it possible to deal with infinite
support uncertainties. In return, the resulting design process is much more intricate for two main
reasons: First, it is highly difficult to check whether solutions of chance-constrained problems are
feasible, and second, chance constraints usually involve nonconvexity (see, e.g., [8, Fig. 1; 9, Fig.1].

In the last decade, sampling-based schemes have emerged as a valid tool to deal with stochastic
problems. Notably, Prof. Boris Polyak played a pivotal role in this field, being among the first
scholars to recognize the potential of randomized methods in tackling optimization problems under
stochastic uncertainty; for instance, see the works [10-12]. These works paved the way for subse-
quent results combining sampling and optimization, as the scenario approach proposed in [13]. For
an overview of these techniques, the reader is referred to [14, 15].

740
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The probabilistic safe region or chance-constrained set (CCS) is defined as the region that
contains all the points satisfying the chance constraints. In a general setting, the exact computation
of the CCS is cumbersome and requires the uncertainty to follow a certain distribution [16, 17].
Besides, the complexity of its geometry can make it ill-suited for real-time applications [18]. Because
of these limitations, it is pertinent to address the problem of approximating the safe regions using
sets of manageable complexity.

For the stochastic control problem, several relaxations have been proposed, which rely on com-
putationally efficient approximations of the chance-constrained set. These relaxations can be either
based on some concentration inequalities, e.g. exploiting previous knowledge about the structure
of the uncertainty [19], or they can be constructed using random sampling methods [20, 21].

The present work stems from the results in [9, 22], where a sample-based methodology to inner
approximate the CCS named probabilistic scaling is presented. This approach computes first a
simple approximating set, which is then scaled to meet the required probabilistic guarantees. These
operations are all performed offline and the trade-off between the number of samples required and
the tightening of the approximation can be adjusted by the user.

In this paper, we discuss and extend the pack-based probabilistic scaling approach presented
in the preliminary conference publication [22], by defining a novel measure of the tightening of
the approximating set. Then, we show how to design the approximating set to meet the required
probabilistic guarantees while incorporating the specified tightening constraint. In this way, the
user is given the capability to control at the same time the complexity and the fitting of the
resulting approximating set, balancing the trade-off between the required number of samples and
the computational complexity of the approximation problem (which is computed offline).

The paper is structured as follows. In Section 2 we introduce the problem of approximating

the chance constrained set and the numerical example used to compare the different approaches.
In Section 3 we go through statistical learning theory solutions to the problem, first introducing
the classical probabilistic scaling approach (Section 3.1) and later describing the extension to the
pack-based framework (Section 3.2). Then, Section 4 is dedicated to the tight immersed pack-
based probabilistic scaling, which is the main contribution of this work. Last, Section 5 includes
the comparative analysis of the different approaches in terms of conservativeness.
Notation: Nxg is the set of natural numbers including 0. The notation & refers to the Minkowski
sum of sets. Given a set of N scalars {z1,z2,...,2n}, we denote z1.y the smallest one, xo.n the
second smallest one, and so on and so forth until xy.n, which is the largest. By the definition
of z14,.n, for a given r > 0, no more than r elements of {x1,...,zx} are strictly smaller than
Z14r:N- We refer to the binomial distribution as

B(s;N,¢e) = 25: <N>£’(1 — )Nt

i—o \ ¢

2. APPROXIMATING CHANCE-CONSTRAINED SETS

Let us consider a robustness problem, where the controller parameters and the auxiliary variables
are parameterized by means of a decision variable vector 8 € © C R™?, which is denoted as design
parameter. The uncertainty vector w represents one of the admissible uncertainty realizations of
a random vector with given probability distribution Pryy with (possibly unbounded) support W.
Then, the generic uncertain constraint can be defined as

g9(0,w) <0, (1)

where the function g : R®*" — R captures the requirement for 6 given w. In particular, in a robust
setting, one requires that the constraint (1) holds for all possible values of w. Clearly, there might
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be situations where dealing with this kind of constraint in a fully robust manner is senseless, e.g.,
when the support of w is unbounded [23]. In that case, one may accept that the constraint (1) is
violated by a fraction of the elements of W. This concept is rigorously formalized in the definition
of chance constraints.

Definition 1 [set of probability e-CCS [9]]. Consider a probability measure Pryy over W. Given
the violation level € € (0,1), we define the chance-constrained set of probability € (e-CCS) as follows

Q) ={0 € 0| Priy{g(0,w) >0} < e}.

Recently, several approaches have been proposed to construct a probabilistically guaranteed
approximation of the chance-constrained set. These approaches are based on sample-based results
(see e.g., [21, 24, 25]). Given W, consider a collection of N independent identically distributed
(ii.d.) samples z = {wi,...,wy} drawn from W. In this case, we say that z belongs to the
Cartesian product WY = W x --- x W (N times) and, correspondingly, we say that z is drawn
according to the product probability measure Pryy~. Let us introduce the concept of an indicator
function, later used to redefine the chance-constrained set.

Definition 2 [indicator function of g]. Given § € © and w € W, then the indicator function
I9:© x W — {0,1} of constraint (1) is defined as

)0 ifg(f,w) <0
g - )
(0, w) = { 1  otherwise.

In the context of statistical learning theory, we can compute approximations of the e-CCS by
means of a constraint on the empirical mean defined as

1 N
- ZIQ(O,’LUZ').
Ni:l

That is, given z = {wy,...,wN} € WH and a discarding parameter 7 > 0, then the parameter
p = 7 bounds the empirical mean so that the set

1 N
D)y (2) = {9 €O: Y (0w < p} @)
=1

constitutes an approximation of Q(¢). Note that the expression + SN T9(0,w;) < « means that
the constraint g(6,w;) < 0 is violated by no more than r elements of z.

Remark 1. We note that, given ¢, Q(e) is a fixed set. On the other hand, when the e-CCS is
approximated by means of sampling techniques (see e.g., [9, 26]), then the corresponding approxi-
mated set has a random nature, being generated from the random samples z € WN.

Assuming that the indicator function I9 has finite Vapnik—Chervonenkis (VC) dimension [27]
and that p < ¢, then the probability of ®,, (z) being an inner approximation of Q(e), i.e.,

Pryyv {@yy (2) € Q(e)}

converges to 1 as the number of samples N converges to infinity. In [28], the sample complexity
bounds for N are explicitly computed, which guarantee that ®,, (z) is included in Q(e) with a
given confidence 0 € (0,1), i.e., Pryyn{®,,(z) C Q(e)} > 1 —0.

The resulting sample complexity grows linearly with the VC dimension of I9 multiplied by a
factor larger than % However, as shown in [9], this approximation may be very conservative. Also,
when the function g is not convex, the resulting approximation is generally non-convex and is often
non-connected. This may hinder its practical application and makes it generally unsuitable for
real-time problems.
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Fig. 1. Scheme of the probabilistic scaling approach.

Building on these notions, [9, 22] introduced the probabilistic scaling idea. At the basis of
this approach is the introduction of an initial simple approrimating set (SAS) 6. ® Qq, which
has to possess two main characteristics: i) be able to capture sufficiently well the “shape” of the
probabilistic set (), while at the same time being ii) sufficiently simple. This initial SAS does
not need to offer any guarantee of probabilistic nature, but it should be able to capture the shape
of the e-CCS.

In [9] it was shown how to scale this set around its center . to obtain a scalable SAS
Q(’Y) = 06 @ IYQOa

and a sample-based procedure was introduced to construct a probabilistically meaningful approxi-
mation of the e-CCS. Specifically, given a shape 2y and a scaling center 6., the goal of probabilistic
scaling is to find the largest scaling factor 4 such that

Pry{0. ® 700 C Qe)} =1 -9, (3)
and therefore, also the chance constraint
Pryw{g(6,w) <0} > 1< (4)

is satisfied with a probability not lower than 1 — 4.

The procedure for constructing such an approximation is discussed in detail in [9], and recalled
formally in Section 3.1.

In Fig. 1, we give a simple illustration of the approach, where we assume that the red area
represents the e-CCS, which as observed can be in general nonconvex. Then:

(1) Select “candidate” approximating set 6. + g (black polygon);

(2) To design the optimal scaling 7, extract N samples z = {wy,...,wx} € AR

(3) For each random sample w;, compute the maximum scaling 7; so that the scaled set (dashed
polygon) does not violate the constraint corresponding to wy;

(4) Select the optimal scaling as ¥ = 414N, i.e., as the r smallest value of ~;.

Then, (3) holds for B(r; N,e) < 6.

Despite the undeniable benefits of exploiting probabilistic scaling, especially in the extended
version where the computational complexity is further reduced by employing the so-called simple-
approximating sets (SAS) [9], the scaling solution may result to be conservative. This issue is
illustrated by means of the following example from [22].

Ezample 1. We consider a problem involving individual chance constraints, where every con-
straint is tangent to the unit circle of a given dimension at a random point, drawn from a uniform
distribution. In this case, clearly, the unit ball is the safe region with probability 1, whereas the
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Fig. 2. The red circle represents 2(0.2), the dashed black circle is the SAS (unit circle), and the cyan
lines are the sampled constraints.

41 —ng =2 i
—ng=3
—ny = 10

3+ —ny =20 N

0 | |

0 0.05 c 0.1 0.15

Fig. 3. Radius r of () as a function of € for different problem dimensions ng.

e-CCS is always a slightly larger scaled version of the unit ball as € increases. In particular, it
can be easily shown that the exact radius corresponding to the chance constrained region Q(¢) can
be computed using some transcendental functions. Figure 2 illustrates this example in R?: where
the dashed line is the unit circle in R? and the outer red circle represents the chance constrained
set 2(e) for the specific value € = 0.20.

Assume that we want to approximate the e-CCS using the empirical mean approximation @, (z)
introduced in (2). To this end, we generate N random linear constraints tangent to points drawn
from a uniform probability distribution on the surface of the unit hypersphere and construct the
approximation as the intersection of them (possibly discarding the “worst” ones). It is clear that
such an approximation will fail to capture the red circle.

Additionally, assume we want to use a probabilistic scaling approach, and we choose the unit
ball as the initial approximation 6. @ €y of the chance-constrained set Q(¢). Then, applying the
previously described procedure, it would be possible to scale this initial geometry around its center
(the origin) to obtain an inner approximation of (¢) with a given confidence level § € (0,1).
However, it is evident that the scaling scheme will always yield the unit hypersphere as a final
result, as each sampled constraint is tangent to it, implying that all computed scaling factors will
be equal to one. Hence, simple sampling-based procedures will fail to capture the radius of the
true set Q(e). Note that this radius may be significantly larger than one, especially when the ngy
increases, as shown in Fig. 3.
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On the other hand, for the given example, one may notice that larger scale factors can be
obtained if one scales the unit-circle taking into consideration only the regions in which more than
a given number of constraints are violated. In this paper, we resort to the pack-based strategy,
successfully employed in the context of statistical learning theory [28] and convex scenario [29],
to obtain less conservative sample complexities and to guarantee that the obtained scaled set is
included into the chance constrained set with a given confidence level. Specifically, the goal is
to extend the pack-based strategy first proposed in [22] to obtain sample-based approximations
of Q(e) with tunable complexity, which do not require any previous knowledge of the problem,
e.g., symmetry. The ability to reduce the conservativeness of the proposed approach will be later
demonstrated against the illustrative Example 1.

3. PRELIMINARY NOTIONS

In this section, we first recall some notions from the pack-based strategy, which are propaedeu-
tical to the main results of this paper. Then, in the next section we present the pack-based
probabilistic scaling (PBPS) approach discussed in [22], which will be later extended to further
reduce the conservativeness of the approximating set. First, we introduce the definition of pack of
samples.

Definition 3 [pack of L samples|. Given an integer L, a collection of L samples z = {w1, ... ,wr} €
WY is said to be a pack of dimension L.

Then, we extend the definition of indicator function in Definition 2 to the pack-based framework.

Definition 4 [pack indicator function]. Given integers s and L such that 0 < s < L and a pack
z € W of dimension L, the pack indicator function I : © x W¥ — {0,1} is defined as

L
0 if Y I9(0,we) < s
/=1

19(0,2) = (5)

1 otherwise,

where 19(60,z) indicates whether the point € violates more than s of the constraints associated with
the uncertainty realizations of the pack z.

Definition 5 [pack safe region]. The pack safe region ®,(z) is defined as the set of points which
violate no more than s of the constraints associated with the uncertainty realizations of z, and can
be expressed as

O (z) ={0€0O|I0,2) =0}.

In the next section, we present a generalization of the results on probabilistic scaling applied in
the framework of pack-based strategy. In detail, we show how to scale the set 0. @ Qg around its
center 6. to guarantee with confidence level § € (0,1), the inclusion of the scaled, pack-based set
into Q(e).

3.1. Generalized Probabilistic Scaling
First, we introduce the definition of scaling factor in the pack-based framework.

Definition 6 [pack scaling factor]. Given a scalable SAS () defined by a scaling center 6, € ©
and a shape g, and a pack z € W', we define the pack scaling factor of Q(v) relative to the
random constraints ¢(0,w;) < 0,Vw; € z as

) ' 0 if 0. ¢ ®y(z)
70, Q0,2) = max ~ otherwise. (6)
HC@VQOQCDS(Z)
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Now, we formalize the generalized probabilistic scaling problem, considering M i.i.d. packs z;,
each one of dimension L. Note that the problem generalizes the probabilistic scaling introduced
in [9], which can be obtained by letting M = N and L = 1 (i.e., considering N packs of dimension 1).

Property 1 [generalized probabilistic scaling]. Given the accuracy parameter ¢ € (0,1) and the
confidence level § € (0, 1), consider the discarding integer parameter r > 0 and suppose that M is
chosen such that

B(r;M,e) < 0. (7)
Draw M ii.d. L-dimensional packs, z; € WL, i =1,... M. For each pack z, compute the corre-
sponding pack scaling factor ~; as
Vi = 78(067 Qo, Z)
according to (6) and define ¥ = 714,.as > 0. Then, with probability no smaller than 1 — ¢,

Pryyc{0. ® Q0 € ®s(z)} <e.

Proof. This property can be demonstrated by particularizing the results of convex scenario
[21, 26] to the case of a scalar decision variable. Another possibility is to derive the results using
the properties of the generalized max function [30, Property 3]. Consider the following optimization
problem:

max 7y (8)
st. 0.DYQ C Dy(z), 1=1,..., M.
If this problem has a feasible solution, then we can rewrite it using the definition of v*(-) as
9
max 7y (9)
st. v <y (0:Q0,2), i=1,...,M.

It has been proved in [21, 26] that if one discards no more than r constraints on a convex problem
with M random constraints, then the probability of violating the constraints with the solution
obtained from the random convex problem is no larger than ¢, with probability no smaller than
1 -0, where

5= (d;i11>B(d+r—1;M,5),

and d is the number of decision variables. We first notice that (9) is convex and has a unique scalar
decision variable v, i.e., d = 1. Also, the assumptions required in the application of the results
of [21, 26] can be easily checked. In particular, non-degeneracy is implied by the fact that the
problem is scalar, while uniqueness can be enforced by introducing a tie-break rule. Hence, if we
allow 7 violations in the above minimization problem, then with probability no smaller than 1 — ¢,
with 6 = B(r; M, ¢), the optimal solution 7 of problem (9) with no more than r constraint removed
satisfies
Prype {7 > (0., Q0,2)} < e.

Hence, we can conclude that with probability no smaller than 1 — ¢
Pryyr{0. ®7Q € ®5(z)} <e.

Note that problem (9) with constraint removal can be solved directly by ordering the values
vi = v*(0c, Q0,2;). 1t is clear that if » > 0 violations are allowed, then the optimal value for v is
¥ = Y14r:N. Smaller values of v would meet the inclusion of constraint but will not be optimal,
while larger values of v would no longer meet the inclusion constraint a.

As discussed before, the result in [22, Property 1] can be particularized from Property 2 by
setting M = N and L = 1. This is summarized in the next corollary.
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Corollary 1 [classic probabilistic scaling]. Suppose that N is chosen such that
B(r;N,e) <.

Let z ¢ WN.  For each constraint i =1,...,N, define v; =" (0, Q0,2;). Suppose that 5 =
Yi+r:N > 0. Then, with probability no smaller than 1 — 4,

Pry{6. ® Q0 € Q(e)} < e.

The proof is straightforward and follows directly from Definition 1. The above corollary shows
that the probabilistic scaling approach in [9] can be viewed as a special case of a more general
pack-based scheme.

Calculating approximations of the e-CCS using classical probabilistic scaling is generally easy
to compute, does not require any assumption on the underlying probabilities (such as finite VC
dimension), provides probabilistic guarantees to the scaled region, and its effectiveness has been
proven [9]. Despite all its advantages, classical probabilistic scaling may still lead to very conser-
vative solutions, as shown in Example 1. In that case, having that v, =1, forall ¢ =1,..., N and
all the constraints are taken into account independently, the act of discarding some of them has no
effect on the resulting scaled approximating set.

In the next section, we outline the so-called pack-based probabilistic scaling, first proposed
in [22]. For the same initial SAS, this variant of the classical probabilistic scaling applied in the
framework of pack-based strategy may lead to less conservative results at the expense of (possibly)
more demanding computational cost.

It is important to highlight that the discarding parameter r is set by the user and it should be
selected taking into account that large values of » make the resulting set less sensitive to extreme
values, at the expense of a larger sample complexity N. On the other hand, the convexity of the
approximating scaled set is independent of the discarding parameter r and only depends on the
choice of the SAS geometry.

Remark 2. Property 1 can also be particularized for the case r = 0. Suppose that M is such that
(1 —e)M < 6. Draw M ii.d. L-dimensional packs z; € W¥ and define v; = v*(f., Qo,z;). Suppose
that 4 = v1.a7 > 0. Then, with probability no smaller than 1 — §, Pryyc{6. ® Q0 € ®4(2z)} < e.

3.2. Pack-Based Probabilistic Scaling

The main underlying idea of pack-based probabilistic scaling is to divide the uncertainty sam-
ples into packs and to allow some constraint violations inside each pack. As opposed to regular
probabilistic scaling, where the scaling factor associated with each constraint is computed indepen-
dently, in the pack-based approach the constraints inside each pack are taken into account together.
Ultimately, this can lead to tighter approximations of the e-CCS and reduced sample complexity.

Let the N sampled constraints be divided into M packs of L constraints each, i.e., z =
{z1, ...23s} = {wy,..., wy}, with z€ WV and z; € WX for i =1,...,M. The following theo-
rem shows how to determine the scaling factor using a pack-based approach so that the scaled SAS
is fully contained in the e-CCS with given confidence 4.

Theorem 1 [pack-based probabilistic scaling]. Consider a shape Q, a scaling center 0., accuracy
parameter € € (0,1), confidence level 6 € (0,1), and nonnegative integers M, L, s with L > s so that

B(s;L,e)™ < 4. (10)

For each pack of constraints i = 1,..., M, let z; € WY and define v; = v*(6.,Q0,2%) as in (6).
Suppose that ¥ = v1.pr > 0. Then, with probability no smaller than 1 — 6,
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Proof. Let p=1— B(s;L,e). From Remark 2, we know that if M is chosen such that
B(s;L,e)™ < § and 5 = 1.7 > 0, then with probability no smaller than 1 — & we have

PrWL{ec S '790 g (I)s(z)} <p-

Equivalently, Pryy,c{I9(0,2z) =1, V0 € 6. ® 3Qy} < p. Moreover, from Property 3 in Appendix A
we have that
Pryyr {I2(0,2z) =1} <p <= Priy{IY(A,w) =1} <e. (11)
Thus, we conclude that Pr{jv {19(0,w) =1} < g, VO € 0. ® 78, equivalent to 0. & 32y C Q(e). O
Unlike regular probabilistic scaling, the sample complexity in PBPS is given by two parameters,
namely the number of packs M and the size of each pack L. The sample complexity is calculated
as N = ML. Consequently, condition (10) is defined by three tunable parameters: M, L and s.
Similar to the discarding parameter r of regular probabilistic scaling, large values of the discarding
parameter of each pack s make the approximating set more insensitive to extreme values. As for M

and L, one could choose them according to any criterion, e.g., minimize the sample complexity N.
Further details can be found in [22].

In the next section, we extend the PBPS approach introducing a constraint tightening scheme,
namely the tight immersion, to obtain a tighter approximation of the e-CCS. Moreover, this ex-
tension will provide a clear way to select the tuning parameters, as discussed in Section 4.1.

4. TIGHT IMMERSION

First, we introduce the notion of tight immersion.
Definition 7. 7-tight immersed. The set S is 7-tight immersed in the e-CCS Q(e) if

S C ), (12a)
S € Q(re), (12b)

where 7 € [0, 1) is a measure of tightening,.

Remark 3. If the e-CCS Q(e) is strictly increasing with respect to ¢, i.e., V71,72 € [0,1) with
71 < To, it follows that Q(me) C Q(7m2e). Hence, the larger 7 is, the larger Q(7¢) will be.

Tight immersion guarantees not only that the approximation set is inside the e-CCS (12a), but
also that it will be not inside a conservative set characterized by 7 (12b). Therefore, it imposes a
more restrictive condition than the regular inner approximation. However, tight immersion should
never be used to compare the goodness of two different geometries. Indeed, as illustrated in Fig. 4,

7 s}
(&4

Fig. 4. Tllustration of the concept of tight immersion.
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we note that for the same geometry, the set with the largest value of 7 fits the e-CCS better
(Fig. 4a). Instead, from Fig. 4b we note that for different geometries tight immersion by itself does
not imply good approximation.

The following property is complementary to the Definition 7 of tight immersion.

Property 2. If the approximating set {(e) is 7-tight immersed in the set €(¢), then it is also
7-tight immersed in it, with 7 € [0, 7).

Proof. From Definition 7, we know that being Q(e) 7-tight immersed in the set () implies
) Z Q(7e). Then, for any 7 € [0,7), we have Q(7¢) C Q(7e). Consequently, the condition
) Z (7e) (12b) holds for any 7 € [0,7) and this concludes the proof. O

Next, we finally demonstrate how to determine the pack parameters (M, L,s) so that, upon
pack-based probabilistic scaling, the condition (12b) is met with confidence 1 — §, with § € (0,1).
Hence, given a SAS )y centered in 6., we aim to determine the optimal scaling factor 74 so that the
scaled set S = 0. ® 78 is tight-immersed in Q(¢).

Theorem 2 [tight-immersed pack-based probabilistic scaling]. Consider the SAS with shape Qg
and scaling center 0., accuracy parameter € € (0,1), confidence level 6 € (0,1), tightening parameter
7 € [0,1), and non negative integers M, L, s, with L > s and such that the following condition holds

(

Qe
Qe

B(s; L,me)™ > 1—4. (13)

Draw M i.i.d. multisamples z; € WY, withi =1,..., M, and define the pack scaling factor related
to each i pack of random constraints as in (6), i.e., v; = v*(0., Qo,2;). Suppose that ¥ = 1. > 0.

Then, with probability no smaller than 1 — 4§,
0. Y C Qe), 0D L Q(7e).

Proof. Let p = B(s; L, 7e). According to Property 5 in Appendix C, if we select the parameters
(M, L, s) such that (13) holds, then we have that the optimal scaling factor is 4 = v1.pr > 0 satisfies,
with probability no smaller than 1 — §, Pryyr{6. ® Q2 C ®4(2z)} < p, equivalently rewritten as

Pryyc{19(6,2z) =0, V8 €b.dvQ} < p.
Then, from Property 4 in Appendix B, we know that
Pryy. {19(0,2) =0} <p <= Pry {I(0,w) =0} < 1 — e, (14)
Therefore, we can conclude that

Priy {I(0,w) =0} < 1—7e, VO € 0.dQ,

ie., 0. ® 50y £ Q(re) with probability no smaller than 1 — . O

Remark 4. We note that in Theorem 2 we use the tightening confidence 1 — ¢ instead of the
original confidence 1 — . This tightening confidence is user-defined and can be set lower than the
original confidence to limit the sample complexity.

4.1. Design of the Pack Parameters

In this section, we show how to design the parameters (M, L, s) of the pack-based approach to
meet tight immersion with confidences d and J, respectively. From Property 1 and Theorem 2, we
know that conditions (12a) and (12b) hold if the pack parameters (M, L, s) are selected such that

M1InB(s;L,e) < Ind, (15a)

M1nB(s; L,te) > In(1 —9). (15b)
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We note that (15a) embeds the probabilistic guarantees whereas (15b) is only used to tighten the
solution. Since B(s; L,¢) is a negative quantity, we can divide (15a) by In B(s; L, €) to obtain

M Iné .
In B(s; L, ¢)

Hence, to satisfy (15a), it suffices to select M such that

Analogously, for (15b) we have that M shall be selected so that the following condition holds

In(1 —9)
S B(s;L,Te) (17)
For a given set of probabilistic and tightening parameters (e, d,7,d), there exist multiple com-
binations of (M, L, s) that meet (16) and (17). In this paper, we propose two different criteria (:
(i) minimize the number of possible combinations of s + 1 constraints, i.e., ( = M(sil), or (ii) min-
imize the total sample complexity, i.e., ( = M L. Then, the pack parameters (M, L,s) are the
solution of the following optimization problem

(M°,L°,s°) = argmin

M,L,s€N5g
ot In(1 — 6)
o S InB(s; L, Te) (18)
Ind
B {ml ’
L>s+1.

To solve Problem (18), we exploit the ezhaustive search approach [31] to find a proper combi-
nation of the pack parameters (M, L, s), as shown in the following example.

Ezample 2. Given € = 0.05, § = 0.001, § = 0.1, for each s = [1,30], we set M according to (16).
Then, we test the values L = [s + 1,--- ,s 4 300] and check if the pairs (L, s) satisfy (17). Last,
among all the pairs that satisfy (17), we select the one that minimizes the ( criterion (either
¢ = M(sil) or ( = ML). In Table 1, we report the pack parameters (M, L, s) obtained by solving
Problem (18) with the proposed approach using both criteria (. Table 1 shows that, for either
criterion, increasing the tightening parameter 7 results in an increase in both the number of samples

required (V) and the combinatorial complexity (M (Sil)) When the number of available samples

Table 1. Pack parameters, sample complexity and number of possible combinations of TI-PBPS
for different values of 7 = [0.2,0.3,0.4, 0.5] minimizing the two different criteria ¢

Criterion: minimize M(&LH) H Criterion: Minimize N
T M L |s|N M(") M | L s | N M)
0.2 43 27 | 2 | 1.16e4+03 | 1.25e+05 2 195 | 4 3.90e+02 | 4.46e+09
0.3 155 27 | 3 | 4.19e+03 | 2.72e+06 2 303 | 8 6.06e+02 | 1.05e+17
04 2681 20 | 4 | 5.36e+04 | 4.16e+07 | 4 278 | 10 | 1.11e+03 | 6.28e+19
0.5 15033 | 29 | 6 | 4.36e+05 | 2.35e+10 8 309 | 14 | 2.47e+03 | 9.68e+25
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is limited, it is possible to achieve tight immersion with as little as 390 samples at the cost of a
high combinatorial complexity. Moreover, it is possible to add any limitation on the number of
samples N = M L as a constraint in the optimization problem (18) and obtain the pack parameters
that minimize the combinatorial complexity while satisfying the constraint on sample complexity.
Notice that tight immersion is usually computed offline; therefore, the complexity of calculating
the approximation of the CCS does not interfere with online control loops.

5. RESULTS

In this section, we use Example 1 to evaluate the approximations of the 0.05-CCS set by em-
ploying both regular PS and TI-PBPS for various problem dimensions ng. Hence, we choose the
unit ball centered in the origin as the initial SAS approximation 6. & y. Therefore, the resulting
approximating sets are balls centered in the origin and with radius «. Moreover, by means of a
Monte Carlo simulation, we draw 107 random constraints from a uniform distribution of the con-
straints tangent to the unit circle of each studied dimension. Taking advantage of the symmetry of
the problem, we calculate the points where the random constraints intersect a fixed axis and use
them to compute the exact value of the radius for 0.05-CCS. Then, we compute the radii of the
approximating sets obtained by employing regular probabilistic scaling and the novel TI-PBPS for
different levels of tightening 7. To reduce variability, the TI-PBPS radii correspond to the median
radius of three separated experiments, each containing different realizations of the constraints.

In Fig. 5 we can observe how, for this particular problem, the TI-PBPS is able to substantially
improve the result from regular PS (dashed black line), providing approximating radii more similar
to the real one (dashed red line). Moreover, as expected, the tightening of TI-PBPS improves as 7
increases.

3.5
"l __L 1-
) =l ---regular PS
25F e =02
. —7=03
2L . 1 S s | 7=04
I . —7=0.5
_—T " |---0.05-CSS

Fig. 5. Comparison of the radius () of the approximation set for different problem dimensions nyg
obtained by applying regular PS and TI-PBPS for € = 0.05, § = 0.001, and § = 0.1.

6. CONCLUSIONS

In this paper we have presented the probabilistic scaling approach to compute sample-based ap-
proximations of a chance constrained set. The proposed approach allows the user to first choose any
set and then apply a linear transformation to approximate the safe region with the desired proba-
bilistic guarantees. As a result, the complexity of the approximation is tuned a priori. A pack-based
variant of probabilistic scaling with a tight-immersed approach is proposed, which prevents the so-
lution from being conservative. The trade-off between the number of samples, problem complexity,
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and the level of conservativeness of this approach can be tuned by the user. Future research direc-
tions point towards improving the proposed solution, e.g. applying importance sampling schemes,
inspired by [32].

APPENDIX A

Property 3. Consider the integer parameters L > s > 0, the pack z € WL, and the probability
parameter € € (0,1). Then, for w € W, it holds

Pryyr {I9(0,2) =1} <1— B(s;L,e) <= Priy {I(f,w) =1} < e. (A.1)
Proof. Define E(6) = Pryy {I9(0,w) = 1}. Then, we have
Pryyc{I9(0,2) =0} = _ (?)E(G)i(l — E0)" = B(s; L, E(9)). (A.2)
=0

Denote p = 1—B(s; L, ). Since B(s; L, ¢) is a strictly decreasing function of € (see [23, Property 4]),
we have

B(s;L,E(0)) > B(s;L,e) =1—p < E(0) <e. (A.3)
Therefore, we have
Pryyr {I(0,2) =1} <p <= Pry {I9(0,w) =1} < ¢, (A.4)

which concludes the proof. O

APPENDIX B

Property 4. Consider the integer parameters L > s > 0, the pack z € W!, the sample w € W,
and probability parameter ¢ € (0,1). Then, we have

Pryyr{I?(0,2) =0} < B(s;L,7e) <= Prp{l(f,w) =0} <1—7e.
Proof. Recalling the definition of E(0) = Pryy {I9(0,w) = 1}, we have
s (L . .
Pryy {I9(0,2) = 0} = <i>E(9)’(1 — E(6))"" = B(s; L, B(6)).
=0
Since B(s; L, T¢) is strictly decreasing with respect of ¢ (Property 4 of [23]), we obtain
Pryyr {I(0,z) =0} = B(s; L, E(0)) < B(s; L,7e) <= Pryy {I9(0,w) =1} = E(0) > 7e.

Therefore,

Pryyc {I2(0,2z) = 0} < B(s; L,7¢) <= Pry {IY(0,w) =0} <1—7e. ]

APPENDIX C

Property 5. Given the accuracy parameter p € (0,1) and the confidence level § € (0, 1), suppose
that the number of packs M is chosen such that the following condition holds

1_pM<ga

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025



TIGHT APPROXIMATIONS OF CHANCE CONSTRAINED SETS 753

Then, for each pack of constraints ¢ = 1,..., M, draw the M ii.d. multisamples z ~ Pry,r and

define v; = v*(¢, 0, z;). Suppose that 4 = v1.37 > 0. Then, with probability no smaller than 1 —§,
Pyl {c ® 7 C ®Y(z)} < p.
Proof. The proof follows the one of Property 1. Consider the following optimization problem

myin 0 (C.1)
s.t. C@’YQQZ‘I}(S](Z), iZl,...,M.

If problem (C.1) has a feasible solution, according to (6) we can rewrite (C.1) as

i 2
min 7y (C.2)

st. > (c,Q,2y, i=1,..., M.

According to the sampling-and-discard approach [21, 26], if one discards no more than M — 1
constraints and the number of decision variables d is d = 1, then the probability of violating the
scaled approximating constraint set is no larger than p € (0,1), with probability no smaller than
1 — 8, where the confidence level 6 is defined as follows:

M-—1
5 = (%:1)3(1\/-’—1;%1)): > (?)pi(l—p)Mﬂ'

=0
M
M\ . i
= 1‘2( ; )pz(l—p)M =1-p¥
=M

If we remove no more than M — 1 constraints, the optimal solution to Problem (C.2) is given by
¥ = y1.:m, With 7; = v%(¢, Qp, z). Correspondingly, we have P_r%L {7 < (¢, Q0,2)} < p, from which
we can conclude that, with probability no smaller than 1 — ¢,

Prif {0 ® 700 C ®4(2)} < p. O
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Abstract—This paper addresses a problem of the optimal robust tracking of a given bounded
reference signal for a discrete-time minimum-phase plant with a known approximate nominal
model under a bounded and biased external disturbance and coprime factor perturbations. The
bias and norm of the external disturbance and the gains of the perturbations are assumed to
be unknown. The control criterion is the worst-case asymptotic tracking error in the class
of the disturbances and perturbations under consideration, which depends on the above un-
known parameters and the reference signal. A solution of the optimal tracking problem with a
given accuracy is based on optimal errors quantification within the ¢;-theory of robust control,
polyhedral estimation of the unknown parameters, and treating the control criterion as the
identification criterion.

Keywords: robust control, optimal control, bounded disturbance, uncertainty, errors quantifi-
cation, set-membership approach

DOI: 10.31857/50005117925080053

1. INTRODUCTION

This paper addresses the optimal tracking problem of a linear discrete dynamic plant with a
given and tested transfer function. By assumption, the plant is affected by a bounded external
disturbance with an unknown bias and unknown bounds and by perturbations (uncertainties)
for its output and control with unknown norms (gains). The problem is addressed within the
{1-theory of robust control, laid down in [1, 2] and corresponding to the signal space ¢, of bounded
real sequences. The problem has the following difficulty: to minimize a criterion in the form of
the worst-case asymptotic tracking error in the class of admissible disturbances, it is necessary
to compensate for the unknown bias and justify an optimal estimator for the criterion under the
non-identifiability of all the unknown parameters mentioned above.

The solution of the optimal tracking problem described is based on optimal errors quantification
using the set-membership approach and treating the control criterion as an ideal identification
criterion. The set-membership approach in system identification, initially involving the assumption
of known upper bounds on deterministic disturbances, gained wide popularity in the late 1980s
and was reduced to the development of computable upper and lower approximations (ellipsoids,
parallelotopes, etc.) of parameter sets consistent with measurement data. (Here, we refer to the first
special issues of two leading journals on control theory [3, 4].) Applications of these approximations
to control problems are rarely described and are accompanied by various additional assumptions,
such as a priori known stabilizing control. This approach is criticized by supporters of stochastic
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disturbance models for its conservatism caused by a priori assumptions on known upper bounds
on disturbances. In parallel, active research in the field of identification for robust control and
uncertainty quantification began in the early 1990s. A decade and a half later, it was noted in the
review [5] that estimation of uncertainty sets was often mistakenly attributed to identification for
control, as in most of the corresponding studies, the control objective was not considered during
identification. The problems of model verification and uncertainty estimation remain topical to the
present time [6, 7], but are still considered mainly beyond the context of control problems and with
artificial criteria motivated by the objectives of identification itself.

In this paper, bias estimation and errors quantification are based on the set-membership ap-
proach and treating the control criterion as an ideal identification criterion. The potential appli-
cability of such a combined framework arises from two circumstances. First, in the ¢;-theory of
robust control, explicit representations are obtained for asymptotic performance indices in terms
of induced norms of the transfer functions of a closed-loop control system and the norms of all
disturbances and uncertainties [8-11]. Second, the bounded disturbance model allows for the di-
rect use of current measurement data for online model verification [12]. In the general case, such
an approach to control-oriented identification is computationally intractable due to the complexity
of computing current optimal estimates. But it is computationally tractable in the case of linear
or linear-fractional, with respect to the estimated parameters, performance indices [13]. In the
problem under consideration, the performance index (control criterion) is a non-convex quadratic-
fractional function of the unknown parameters (see the representation (9)). For a known bias, the
control criterion becomes linear-fractional, and the problem of errors quantification for this case
was solved in [14], where the idea of estimating the unknown bias using a grid of test values was
also formulated. Below, we rigorously justify this idea and prove a rigorous result on the solution of
the asymptotically optimal tracking problem with a given accuracy. Simulation results and related
remarks illustrate the effectiveness of the solution proposed.

Notation:
|o| is the Euclidean norm of a vector ¢ € R"™;
2l = (vg,Ts11,...,7¢) for a real sequence x = (--+ ,x_1,70, 71, );

24| = maxecret [l;

[[]]ss = Timsup;, oo |24;

|z]|co = supy |z¢| is the norm in the space fo of bounded sequences;

||| = Z,j;’% |z| is the norm in the space ¢; of absolutely summable sequences;

Gl = >42% lgk| = llgll1 is the induced norm of a stable linear time-invariant causal system G :
oo — Lo with a transfer function G(\) = 728 grAF.

2. THE PLANT MODEL AND MEANINGFUL PROBLEM STATEMENT
The plant model is described by the equation
a’(q_l)yt - b(q_l)ut + Vg, t= 17 27 37 sy (1)

where y; € R is the measured output of the plant at a time instant ¢, u; € R is the control input,
vy € R is a total disturbance, and ¢! is the backward shift operator (¢~ 'y = y;_1). The initial
conditions ¥{_,, = (y1_n,...,%0) are arbitrary, and u; = 0 for ¢ < 0. The polynomials

aA) =1+ a A+ ... +a, N, bA) =biA+ ...+ b A"

characterize the nominal model of the plant, i.e., the model without the disturbance v. The total
disturbance v has the form

vy = Y+ 0%w + YA y)r + A% (w)y,  [|w]leo < 1, 6¥ >0, 6Y >0, 6% > 0. (2)

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025



758 SOKOLOV

The parameters ¢ and §" in (2) characterize the bias of the external disturbance ¢* + 6*w; and
the upper bound on the unbiased disturbance 0w, respectively. The numbers ¢ > 0 and §* > 0
are the gains (induced norms) of the perturbations affecting the output and control, respectively,
and

A <pt =, max el 1A% <pf = max il (3)
In the ¢1-theory of robust control, these perturbations are called uncertainties with limited mem-
ory u, which ensures the independence of the asymptotic dynamics of the closed-loop control system
from the initial data. The uncertainty memory g is chosen by the designer to be arbitrarily large,
but not infinite, without compromising the guaranteed control performance. The description of
disturbances in the form (2), (3) is equivalent [10, 11] to the inequalities

log — | < 8% + §Yp] + 6"p} V. (4)

A priori information about the plant is contained in the following assumptions.

A1l. The polynomials a(\) and b(\) of the nominal plant are known, b; # 0.

A2. The roots of the polynomial @ lie outside the closed unit circle of the complex plane.
min’

A3. The parameter column vector § = (6,6%,6%)" is unknown, and the bias ¢ € [c o ax

. R w w
is unknown, albeit with given c; and ¢,

C

A4. The asymptotic upper bound ||r||ss of the reference signal r or its upper bound is known.

Assumption Al also covers the case when the “true” nominal model is unknown and its esti-
mator, obtained by some identification method, is available for testing. Assumption A2 ensures
the boundedness of the control input w if the plant output y is bounded. (Such a plant is called
minimum-phase.) Assumption A4 will be commented upon after the rigorous formulation of the
problem at the end of Section 3. Another mandatory assumption restricting the norms of the
perturbations will be introduced in Section 3 after Theorem 1.

Meaningful problem statement: it is required to design a control law minimizing the worst
asymptotic tracking error of a given bounded signal for a set of disturbances satisfying inequali-
ties (4).

To solve the optimal problem with a given accuracy, one needs to quantify the errors online (i.e.,
determine their unknown parameters ) to estimate the tracking performance and compensate for
the unknown bias ¢*.

3. THE TRACKING PERFORMANCE OF AN OPTIMAL CONTROLLER
UNDER A KNOWN BIAS ¢*. PROBLEM STATEMENT

Let r = (r1,72,73,...) be a given bounded signal (r € ). The control criterion of the tracking
problem has the form

Ju(c?,0) =sup [ly = rllss, |y —rllss :==1limsup |y — 7], (5)
veV t——+o00

where V' is the set of all disturbances v satisfying inequalities (4).
Consider a controller described by the equation

(g ur = (alg™") — Vye + 1 — ¢*. (6)

Note that (6) specifies the value of u;—1, not w;, which does not figure in this equation. For the
output of the closed-loop control system (1), (6), we then obtain

yr— 1 = v — ¥ = 8wy + 59A1(y)t + 5“A2(u)t. (7)
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Due to the arbitrariness and unpredictability of the right-hand side in (7), the controller (6) is
optimal for the control criterion (5).

Definition 1. The closed-loop system (1), (6) is said to be robustly stable in the class of distur-
bances V' if J,(c",0) < +o0.

To formulate a theorem on the performance of the optimal controller (6), we denote its transfer

functions relating y and r to the control input u :

a(A) —1 1

— ' Gu(N\) = ——.
b(A) () b(\)

Theorem 1. Under Assumptions Al and A2, the following assertions are true.

Guy(/\) =

1) The closed-loop system (1), (6) is robustly stable in the class V with a disturbance memory
u = ~oo if and only if
0¥+ 6"||Guyll < 1. (8)

For the system with the zero initial conditions y{_,, and p = +oo,

0 + 8Y||7|lss + 8%(|c® | 4+ ||7|ss)||1/b(g™
)= T, ) = TP B a7 o)
uy

2) For the system with arbitrary initial conditions v . and u < +oo,
Ju(cwa 5) < J(cw7 5) VN > 07 (10>

and if the sequence |r| uniformly often falls into the neighborhood of the upper limit ||r||ss (see the
definition in [10]), then for any initial conditions

Ju(cwﬂé) /‘ J(cw75) (/J' — +OO)7 (11)

where the sign ' means monotonic convergence from below as p — +00.

The proof of Theorem 1 was given in [14].
The final assumption (A5) restricting the norms of the perturbations follows from Theorem 1.
A5. A number § is known such that

8 + 8" ||Guyll <0 < 1. (12)

Assumption A5 is not restrictive compared to the robust stability condition (8). According
to the meaning of the problem, the parameter § is assigned by the designer and can be chosen
arbitrarily close to 1. But for values of §Y 4+ §"||G,,|| close to 1, the control criterion J,(c",0)
becomes too large and the nominal model with the given tested polynomials a(\) and b(\) or the
plant with such perturbations can be considered unacceptable.

Problem statement. Under a priori information A1-A5 and a given tracking signal r, it is
required to design a feedback control law u; = Uy (yt,u{™!) (with finite memory) that ensures the
inequality

ly = rllss < J(c,0) (13)

with a given accuracy.

The main difficulty of the problem is to ensure inequality (13) under the non-identifiability of ¢*
and 0 (see subsection 4.1).

The index (9), used below as an identification criterion, depends on ||7||ss. If this value is a priori
unknown, the recursively computable non-decreasing estimators R; = maxj<i<¢ [7x| < ||7]|c0 can be
used instead to obtain a fundamentally theoretically unimprovable tracking performance guarantee
with ||7||ss replaced by ||7||so-
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4. OPTIMAL TRACKING

The solution of the problem is based on optimal errors quantification for the nominal model
being tested.

4.1. Optimal Errors Quantification with a Known Bias ¢

Due to the plant equation (1) and inequalities (4), given a known bias ¢, complete information
about the unknown § at a time instant ¢ is contained in the a priori assumption A5 and the inclusion

0eDi={5>0 lalg " )yx —blg ur — | <3 +8'p} +8"p} Wk <t} (14)

where § = (Sw,gy,S“)T. The system of inequalities in (14) is equivalent to the description of sys-
tem (1)-(4) on the interval [1,t] for any control u '. Then the best estimator of the parameter §
in terms of the control criterion J, consistent with the measurements y4 and u§ ', has the form

§; = argmin J (¥, 9). (15)
SEDt

The optimal problem (15) is a linear-fractional programming problem with the unknown row vec-
tor &. It is reduced to a linear programming problem in the standard way by introducing an
additional real variable [15]. The number of linear inequalities with respect to 4 in the description
of the sets D; can infinitely increase as t grows. To ensure the boundedness of the number of
inequalities and the convergence of the polyhedral and vector estimators of the unknown column
vector J in finite time, we choose the parameter €1 > 0, which specifies the dead zone size when
updating the estimators. The initial polyhedral estimator of § has the form

Po={6=(8"8"0"" [ 620, & +5"|Guy | << 1}, 6= (0,007

Denoting
vir1 = |alg Dy — (@ ueer — ¢l b = (Lpf1.pi) T (16)
we write the new inequality in the description of Dy as

0 € Qt—i—l = {S | Vit] < STQSH_l} . (17)

Let P; and é; be the polyhedral and vector estimators of ¢ at a time instant t. We set

P, if viv1 < OF dra1 +e1|drsa]
P = o (18)
P, N Q1 otherwise,
Sp41 = argmin J(c¥, 6). (19)
d€Pi1

According to (18), the polyhedral estimator P,y; is updated by adding a new inequality only
if the distance from §; to the half-space ;41 C R3 gxceeds €1. Note that all estimators P; are
unbounded in the direction of growth of the variable §*.

4.2. Optimal Tracking under an Unknown Bias c¥

To compensate for the unknown bias ¢ € [c¥.,, ¥, we will estimate it using a grid of the
form
CYox — Cis
Ch = Cmin + k€2, k=0,1,... N, €9 = maXN R >0, (20)
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which yields a guaranteed estimator of the bias ¢“ with the desired accuracy e2/2 by choosing
a sufficiently large IN. For each bias ¢}/ and each time instant ¢, we compute the polyhedral Py ;
and vector 0y ; estimators of the unknown vector 6. We define the best estimate number £; of the
vector ¢ at a time instant ¢ by the formula

ky = argmin J(cy;, 6g.¢)- (21)
k

The control input u; at a time instant ¢ is determined by the adaptive controller corresponding to
this estimate:

b(q~ urrs = (alg™") = Dyerr + g1 — ¢y (22)
After measuring the output y;11, the residuals
Vi1 = lalq™yesr — blg™uerr — cf|

and the estimators Py ¢4 and dx4+1 for £ =0,1,..., N are computed according to (16)—(19). (The
corresponding formulas, with the subscript & in each, are omitted here for brevity.)

Theorem 2. Under Assumptions A1-A5, let the plant (1) be requlated by the adaptive con-
troller (22) with the estimator (16)—(19), (21) and the dead zone parameter €1 in (18) such that

1-946

O0<egg < —m—.
L+ [|Guyll

(23)
Then the number of updates in the polyhedral Py and vector 0y estimators is finite for all

ke€{0,1,...,N}, and the tracking error satisfies the inequality
ly = rllss < T(cls 000 +1(L, 1L, 1)T) = J(ef,,000) + O(e1)  (as &1 — 0), (24)

where koo is the final value of the best estimate number (21) for the unknown §, 6o is the final
value of O t, and

ﬂﬁ;ﬁmwgJG%5+<%+th30>:J@%®+%Xq+fﬂ(q+5y%®. (25)

Proof. For any control u; and any k € {0,1,..., N}, from the plant equation (1) and the repre-
sentation (4) of the total disturbance v it follows that

lalg™ 1 = g™ Dueer — | <[ = e[ + 6+ 0Vplyy + 8" piy Vi (26)

By the representation (4), inequalities (26) allow treating the plant as a virtual object of the
form (1), in which the virtual external disturbance has the bias ¢}’ and the norm of the unbiased
external disturbance does not exceed

Y = | — ] + &%, (27)

We prove that the number of updates in the estimators Py ; and d;; is finite for all k. For each
update of the estimators, according to (18), we have

€1|pt1]| < viv1 — 5tT¢t+1.
Then, for any Se Q¢41, (17) implies

e1|r1] < (0 — 0t) T prsa| < |0 — 6| b1
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and, consequently, |<§ — 0¢| > €1. Hence, for all k, the distance from the estimator dj; to the half-
space {1 ;41 is greater than e1. As Py ;y1 C 41, the distance from 6y, to P41 is also greater
than £1. The polyhedral estimators Py ; decrease monotonically in time due to the addition of new
inequalities. Moreover, the balls of radius €1/2 centered at d; have empty intersection with similar
balls centered at the future updated estimators & s (for s > t) and, consequently, with all balls &y, s
for s # t. It follows that the number of possible updates in the estimators d; is finite for all £,
since they all lie in the corresponding bounded sets {d; | J(¢¥,d) < J(c¥, (8%,6Y,6“)T)}, where
5 is given by (27).

We denote by 00 = (5};”00,5,2,00,5};‘,00)T the final values, i.e., the limit values of the estima-
tors 0y + achieved in a finite time t, o, and set to = maxy, tj o. Then 03+ = 0 o for all t > ¢, and
all k.

Let ko be the steady-state number of the best estimate of the vector 9 :
koo = argmin J(cy,, 0 o00)-
k
Due to (21), we have
J(Cz)oo s 5/600) < J(C}f, 5]@700) Vk. (28)

For all t > to, in view of (18), the residuals (26) in the closed-loop adaptive system with the
steady-state controller satisfy

Vhoott < O o0t +€1162] < (O, +1(1,1,1))¢r. (29)

By Theorem 1, this inequality implies (24).
We denote by
k. = argmin |c" — ¢} |
k

the number of the estimate ¢ closest to ¢*. Then |c¢* — ¢}’ | < e2/2 and, due to (18),

_ _ €
(g™ )y — b(g uryr — ¢ ] < 52 + 0" Gy + 21/
& T (30)
<o+ (5 +€1,€1,€1> ) br+1
for all t > t. According to Theorem 1, this inequality yields
J(cﬁ*,ék*m) < J(c“’,5+ (%—I—El,El,El)) . (31)

Using (28) with k = k, and (31), we obtain inequality (25). Finally, the term O(e; 4 €2) in (25)
follows from the fact that J(c",d) is a fractional rational function of § and its denominator is
separated from 0 by Assumption A5. The proof of Theorem 2 is complete.

Remark 1. Inequalities (24) and (25) mean the suboptimality of the solution of the tracking
problem (13). The estimate O(g1 + €2) of the solution accuracy in the stated optimal problem,
guaranteed by inequality (25), is only qualitative and cannot be used for computations since ¢*
and § are unknown. For a particular realization of the disturbances, the best computable estimate
of the solution accuracy in the optimal tracking problem is the current difference

(AT)e = (e, 0k, +e1(1, 1, 1)T) = J(c, 61, 0), (32)

which is consistent with the measured data y!_,, u! and will be guaranteed as the estimators
converge in a finite time. Although the convergence time of the estimators to the final value is
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unknown, a long period of unchanged estimates actually confirms the validity of this estimate by
Theorem 2. If the current estimate of the solution accuracy is unsatisfactory, one can (at any time)
decrease the dead zone parameter €1 to improve the accuracy. In this case, the number of updates
in the estimators P, and d;; may increase. The grid step €2 has a more transparent impact on
the optimization accuracy (the term /2 is added to the estimates d;’;) and can be chosen a priori,
while keeping in mind that a decrease in the grid step 2 will cause an increase in the number of
polyhedral P and vector dj; estimators computed in parallel.

5. SIMULATION
Let the plant be described by equation (1) with the unknown parameters

0" = [a],a3,b],b5,b3] = [—2.7; 1.8; 2; —3.36; 1.4] (33)

of the nominal model, and let a nominal model with poles 0.7 and 0.8 (the roots of a()\)) and
zeros 1.1 and 1.3 (the roots of b(\)) and the coefficient by = 2 be available for testing. This nominal
model matches an unstable minimum-phase plant (1) with the parameters

0 = a1, ag, by, by, bs] = [—2.6786; 1.7857; 2; 3.3566; 1.3986], (34)

slightly differing from the parameters (33). Let the plant with the parameters (33) be regulated
by the adaptive controller (22), which is optimal for the tested plant with the parameters (34).
The characteristic polynomial of this closed-loop system has roots 0.7512 + 8.9242¢,1.3032, and
1.0945 (with an accuracy of 107%), being greater than 1 by absolute value; therefore, the closed-
loop system without the perturbations is stable. The dynamics of this closed-loop system can be
treated as the dynamics of that with a plant with nominal parameters # and additional relatively
small perturbations

A(yi=a,uy=3) = (a1 — aj)ye—1 + (a2 — a3)yr—2 + (0f — br)ue—1 + (b] — b1)us—2,
arising from the “inaccurate” coefficients of the nominal model tested. The disturbance v; in the
nominal model with the parameters 6 is described by

vp = + 8wy + kY 8V |y T p |+ kS uiT Ll (kY <1, |k <L =20, (35)

Let the tracking signal be r, = 10sint for all ¢.

Ezample 1. Random disturbances. Let the unknown parameters in the description (35) have the
values

=5 5 =1, 6 =5"=0.1, (36)

and let wy, k7, k¥ be independent pseudorandom variables uniformly distributed on [—1,1]. The
simulation was performed with the following adaptive control parameters: the dead zone parameter
g1 =107, Cpin = —10, ¢ = 10, and the grid step €2 = 0.5.

Figure 1 shows the graphs of the tracking error y — r on the left and the current optimal control
criterion estimates J(cj,, ok, ) on the right.

Next, the final values J(c}’,0k,1000) for all k, consistent with measurements on the interval
[1, 1000], are presented in Fig. 2 on the left. The switching of the estimates c}f"t’t of the unknown
bias ¢¥ =5 are provided in Fig. 2 on the right. Despite the symmetry of the distributions of
the random variables wy, k7, ki about zero, the steady-state bias estimate i}, = 4.5 differs from
c’ =5.
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Fig. 1. The graphs of y — r (left) and J(c}. ,dk,+) (right). Solid lines correspond to +.J(c*,d) and
dashed lines to +J(c}!_, 0k, )-

80 r

70 -

60

6k, 1000)

J(cp

30

1 1 1 1 1 1 1 1 a

20 1 1 1 1 0 1 4
—10 -5 0 5 10 0 100 200 300 400 500 600 700 800 900 1000

¢, 1

Fig. 2. The values J(c, o,1000) (left) and the switching of the estimates cj;, , (right).

In all the numerical experiments with random perturbations and deterministic “oscillatory”
disturbances, the steady-state upper bounds of the tracking error J(c}_, dx,,), consistent with the
measurements, are significantly (several times) smaller than the unknown optimal upper bound of
J(c¥,d). When quantifying the errors, the perturbations do not manifest themselves in any way
since the current estimates d; of the unknown vector ¢ usually have the form J§; = (¢}, 0, 0).

Remark 2. Proponents of stochastic disturbance models in system identification theory con-
stantly criticize the set-membership approach for its seemingly inevitable conservatism due to the
necessary a priori information about upper bounds on deterministic disturbances. (Here, only the
conservatism of the set estimators of unknown parameters is implied.) As illustrated by Example 1,
the use of set-membership estimation and the control criterion as the identification criterion makes
the measurement-consistent performance guarantees non-conservative and, furthermore, improves
performance guarantees compared to the optimal control criterion (5), since particular disturbance
realizations are generally far from the disturbances maximizing the tracking error. This is analo-
gous to the fact that in the stochastic case, average performance indices are better than the worst
possible values on particular “bad” realizations. However, in problems with stochastic disturbances,
disturbance model verification is usually not discussed. The optimality of tracking within the de-
terministic ¢;-theory is based on the verification of the disturbance model and the use of sufficiently
complete information about unknown parameters obtained in the control process, and the price for
optimality is a corresponding increase in the volume of necessary computations.
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Fig. 4. The graphs of k! and switching of the estimates of the unknown bias c¢* = 5.

Ezxzample 2. “Bad” deterministic disturbances. This example is intended to demonstrate a “bad”
total disturbance under which the presence of perturbations in the total disturbance v becomes
evident.

Consider the plant (33) with the total disturbance (35) and the parameters (36) with the reduced
value 0* = 0.05 and the deterministic sequences

wy = cos(50t), kY = sin(70t), k}' = cos(In(0.5¢)). (37)

The left graph in Fig. 3 shows the tracking error of y — r. Under this disturbance, for all ¢t > 498,
the estimates are (5}%7t > 0 and (5,‘Zt7t = 0; the last estimates are x,,,5000 = (1.6993;0;0.0581) and
ctooo = 4. Thus, starting from the time instant ¢ = 498, the perturbation affecting the control
manifests itself in the estimates dy, ; of the disturbance norms.

As is known, stable linear time-invariant systems may have large deviations from zero due to
nontrivial initial conditions or a bounded disturbance [16, 17]. In Example 2, a large deviation of
the tracking error (with max; |y; — r¢| = 5.4573 x 10*) in the nonlinear closed-loop system (1)—(6)
can be caused both by the switching of the controllers corresponding to different estimates of the
biases and by the “asymmetry” of the sequence kj* = cos(In(0.5¢)) about zero (see the left graph in
Fig. 4). The current optimal estimates Cj, ¢ Of the unknown bias ¢* are shown in the right graph
of Fig. 4, where the steady-state bias estimate is ¢j] =4 # ¢ =5.
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Remark 3. Despite the tracking error values in the transient mode having the order of magni-
tude 10 (unacceptable in applications), the asymptotic behavior of the tracking error under this
disturbance is characterized by the numbers

max |y, — | = 4.4163, max |y — r¢| = 2.7566.
+€[4001,5000] +€[4901,5000]

Thus, the factual steady-state tracking error is by an order of magnitude smaller than the final
guaranteed tracking error estimate J(cy_,dk,, ) = 30.4421, consistent with the measurement data.
In turn, this estimate is better than the optimal (but unknown!) value J(¢*,d) = 37.2971 guaran-
teed by Theorem 1, despite the low chosen “accuracy” of the bias estimates (the grid size €2 = 0.5).
Finally, the optimal value J(c",0) itself is less than the worst possible asymptotic tracking error
since J(c",0) ignores that the tested plant has the nominal parameters 0* instead of §. As a result,
the adaptive compensation algorithm for the unknown bias ¢* fulfills its purpose despite possible
large deviations of the tracking error from zero and even “adapts” to particular realizations of
the disturbance v, reducing excessive conservatism in the guaranteed performance estimates under
non- “maximizing” disturbances.

Remark 4. According to the above graphs of the switching of the estimates cj,, the unknown bias
¢" is non-identifiable in the description (4) even in the absence of perturbations since control always
deals with particular realizations of the disturbance v; for which the biases (for any reasonable
definition) can be (more correctly, will be) different. That is, the term “bias” with respect to
the constant ¢ in the description (4) refers precisely to the concept of bias for the class of all
disturbances satisfying (4). At the same time, the current estimates ¢}, can (or rather should) be
considered a correct definition (in the context of the control problem being solved) of the current
estimates of the bias for a particular realization of the total disturbance v.

Remark 5. The volume and speed of computations in the above examples are characterized by
the following indicators. The computation time on a laptop with 15.2 GB RAM and an Intel
Core Ultra 5 125H processor is 2.99 s in Example 1 and 15.1169 s in Example 2. The number of
inequalities in the polyhedral estimators Py ; is 12-15 in Example 1 and 64-81 in Example 2. The
ratio of these limits approximately matches that of the interval lengths, equal to 5. The indicators
of Example 2 on the time interval [1, 10 000] remain the same, meaning that the transient processes
for the particular disturbance v under consideration have already been completed by the time
instant ¢ = 5000. Note that the computation time is determined mainly by the time to calculate the
polyhedral estimators P and the optimal vector estimators 6y ; in R3 and is almost independent
of the dimension of the nominal parameter vector 6.

Remark 6. The number of inequalities in the description of the polyhedral estimators Py ; and, as
a consequence, the computation time of the optimal estimates in (21) can be reduced by eliminating
possible redundant inequalities after adding the new inequalities (17); for details, see [18]. In the
simulation results presented, this was not done in order to demonstrate the number of possible
estimator updates even for a very small value of the dead zone parameter £1 (almost zero from the
viewpoint of assessing the model quality).

6. CONCLUSIONS

This paper has considered a discrete minimum-phase plant with a known or specified nominal
model (for testing), a biased and bounded external disturbance, and perturbations with unknown
norms and an unknown bias. For this plant, the optimal tracking problem of a given bounded
signal with a given accuracy has been addressed. The problem difficulty lies in the need to com-
pensate for the bias based on reasonable optimal estimation of control performance under the
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non-identifiability of all unknown parameters. The solution of this problem involves errors quan-
tification, set-membership estimation of unknown parameters, and the use of the control criterion
as an ideal identification criterion. Within such an approach, it becomes possible to more deeply
understand, demonstrate, and implement the maximum capabilities of feedback control. The im-
portance of feedback research was emphasized by L. Guo, a leading expert in adaptive control and
identification of systems, in the abstract of his paper [19]:
“The main purpose of adaptive feedback is to deal with dynamical systems with internal
and/or external uncertainties, by using the on-line observed information. Thus, a funda-
mental problem in adaptive control is to understand the maximum capability and limits
of adaptive feedback.”
In this context, we also provide a quotation from the abstract of his another paper [20]:
“Finally, we will consider more fundamental problems on the maximum capability and
limitations of the feedback mechanism in dealing with uncertain nonlinear systems, where
the feedback mechanism is defined as the class of all possible feedback laws.”

The solution presented in this paper not only ensures, with a given accuracy, the same tracking
performance estimate as under the known parameters of the nominal plant and disturbances, but
also gives significantly better guaranteed performance estimates depending on particular realiza-
tions of deterministic disturbances. Thus, it is implicitly considered that particular realizations of
disturbances are usually far from those maximizing the control criterion: in order to maximize the
tracking error estimate, the total disturbance v; must not only take maximum values on a long
time interval but also have definite signs on this interval.
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Abstract—We consider a time-optimal control problem with Fuller-type symmetry and with
control in the 2-dimensional unit disk. The problem can be solved analytically, with an implicit
representation of the Bellman function. The optimal value of this problem serves as an upper
bound on the optimal value of another optimal control problem with Fuller-type symmetry and
with a second-order singular trajectory, which cannot be solved analytically.
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1. INTRODUCTION

Optimal control problems are usually solved by means of the Pontryagin Maximum Principle
(PMP), which leads to a Hamiltonian system with discontinuous right-hand side [7]. Since the
Lipschitz-condition, as a consequence of the discontinuity, does not hold, the theorem of existence
and uniqueness of solutions to the Ordinary Differential Equation (ODE) does not hold, and the
phase portrait can exhibit various kinds of singularities, which appear in the optimal synthesis as
singular trajectories. Since such singular trajectories often arise as part of the optimal synthesis,
it is necessary to have a good understanding of these singularities. To this end a model problem is
considered which on the one hand, is easy enough to be solved, in the best case analytically, and
on the other hand, exhibits the kind of singularity under study.

The phenomenon of singular trajectories in optimal control was first discovered in [1], where
an example of a system was exhibited where the optimal control performs an infinite number of
switchings in finite time, so-called chattering. Singular trajectories were studied systematically in,
e.g., [2-4, 6]. The phenomenon of chattering was studied in detail in [5, 8]. A more complicated
system exhibiting chattering combined with a fractal optimal control pattern was investigated
in [9, 10].

In this work we study singular trajectories of second order, continuing the research program
initiated in the seminal work [8]. The first optimal control problem with a second-order singular
trajectory has been solved in [1]. Tt is given by the formulation

2

min/%dt: i=y, y=u, wucl[-1,1]. (1)
0

The second-order singular trajectory present in the phase portrait of the corresponding Hamiltonian
system is the trajectory x(t) = y(t) = 0. A junction of a generic optimal trajectory of problem (1)
with the singular one is performed in finite time with an infinite number of switchings of the
control u between the extremal values £1. The Bellman function of problem (1) has been explicitly
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computed in [9] and is given by

1 1 1
— 2%y — oy — —yf —y(y? +20)%, > —Bylyl;
wip(z,y) = ) 2 ; 3 115 (2)
Lo L 3, 1 5 2 _ s < _
587~ 3Ty + Ty y(y® —2x)2, =< —PBylyl,

where 8 & 0.4446 solves the equation
368 +38%-2=0
—B°+26-%

10(1-28)3
problem with initial data z(0) = xo, y(0) = yo.

and v = ~ 0.06753. Recall that the expression —wip(zg,y0) is the optimal value of the

The optimal synthesis of the problem exhibits a continuous symmetry. Namely, if (z(t), y(t), u(t))
is an optimal solution of problem (1), then for every A > 0 the trajectory

(2a(), ya(t), ux(t) = (Nz (A1), Ay(A~'t), u(A7'1)) (3)

is also optimal [8]. Similarly, for every A > 0 the Bellman function obeys the relation
wlD(A2x7 )‘y) = ASWlD(xa y) (4)

In [8] an analog of problem (1) with two-dimensional control was considered, namely
[ Ll
x
min/Tdt: =y, y=u, uclU=D, (5)
0

where D = {u € R? | ||u]| < 1} is the unit disk. Here x(t), y(t) are vector-valued functions. This
problem also features a second-order singular trajectory at the origin (z,y) = (0,0) of the space
R? x R2. It exhibits the same symmetry (3), but also an additional rotational symmetry. Namely,
for every optimal solution (z(t),y(t),u(t)) of problem (5) and every orthogonal matrix O € O(2)
the trajectory

(0x(t), 0y(t), Ou(t) (6)

is also optimal. The Bellman function wyp of problem (5) satisfies the symmetries
wap (AN, Ay) = Nwap(z,y), wap(Ox, Oy) = wap(z,y)

for every A > 0 and every O € O(2). The rotational symmetry implies that the dynamics of the

(r,2) (2,9)
(z,y) (v.y)
time ¢t of this 2 x 2 matrix is determined solely by the initial value of the Gramian itself.

optimal synthesis factors through to the Gramian of the vectors z,y. The value at

It was shown in [8, Proposition 7.8] that for linearly dependent initial vectors x(0),y(0) prob-
lem (5) reduces to problem (1), and the vectors z(t), y(¢) stay in the 1-dimensional subspace spanned
by the initial vectors for all time. In particular, for linearly dependent vectors x = - (cos ¢, sin )7,
y =1y - (cos ¢,sin )T the Bellman function satisfies

wap(z,y) = wip(re, ry),

where 7,7, are allowed to take arbitrary real values.

Besides the optimal trajectories of problem (5) emanating from linearly dependent initial values,
a family of self-similar optimal trajectories has been computed in [8, Proposition 7.9, Corollary 7.3].
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For these trajectories, the tangent of the angle between the vectors  and y is constant and equals
—/5/2 (the values v/5 and 1/5/2 in [8, p.233] are both erroneous), and between the vectors y and u
it is —v/5. Moreover, 2(y,y) = \/6{z, z). It follows that the Gramian of the initial values z(0),y(0)
is given by

NN
(@(0)756(0)) <l‘(0)ay(0)>> | 54 27

@(0),50)) wO,p0)) | A N

27 6

for some Ay > 0. The Gramian of the corresponding trajectory evolves according to the formula

(7)

A A@)?
(@(t), (1)) (@t y®) | 52 T or o
( y(t)) (y(t),y(t)) N _Lt)g Lt)Q . At) =Ao—t. (8)
27 6

It follows that the parameter )\ is the arrival time at the singular trajectory, which is located at
the origin (x,y) = (0,0).

While the angles between the vectors x, y, u remain constant, the vectors themselves revolve ever
more rapidly around the origin, making an infinite number of revolutions in finite time. More con-
cretely, the direction each vector is pointing is given by the time-varying angle [8, Proposition 7.9,
Corollary 7.3]

©(t) = ov/5log(Ag — t) + const, 9)

where o € {—1,+1} determines the direction of revolution and the additive constant on the initial
conditions.

The complete optimal synthesis of problem (5) is currently unknown. In this paper we compute
an upper bound on the objective value by constructing a sub-optimal solution. This upper bound
has to satisfy several, potentially conflicting criteria:

e the bound should be reasonable close to the true value

e the bound should be efficiently usable numerically, e.g., given by a global analytic expression
As we have seen from the analysis above, the optimal solutions for different initial values can be
quite different from each other. Constructing a bound which is everywhere close to the optimal
value and at the same time not given by a multitude of different expressions for different phase
space regions is a challenging task.

We cope with this difficulty by solving the time-optimal control problem
min (T —ty): =y, y=u, wveU=D, z(T)=y(T)=0, xz(to)==z0, y(to)=2yo, (10)

which up to a shift of the time variable ¢ has the same feasible set of trajectories as problem (5) but
another objective value. This is accomplished in Section 2. In Section 3 we substitute the obtained
time-optimal solution in the objective value of the original problem (5) to obtain the upper bound.
Finally, in Section 4 we compare the upper bound with the optimal value of problem (5) on those
trajectories where the latter is known. It turns out that, on the one hand, the quality of the bound
is reasonably good on all initial values for which the optimal solution of problem (5) is known, and
on the other hand it is given by a single analytic expression.

2. TIME-OPTIMAL CONTROL PROBLEM

In this section we analytically solve the time-optimal control problem (10).
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Let us apply the PMP. Introduce adjoint variables ¢, and assemble the Pontryagin function

H=—1+(¢y) + (¢, u). (11)

The optimal control is then given by 4 = arg max,cy H = ﬁ whenever 1) # 0. The dynamics of
the adjoint variables is given by

Since the terminal time instant 7" is not fixed, we also have the transversality condition
H(T) = (,a) =1 =4[] =1 =0. (12)

Hence the function v (t) = ¢t + 1(0) is affine and at t = T terminates on the unit circle.

By virtue of the rotational symmetry, without loss of generality we may assume that p=—¢=
(o,0)T is collinear with the unit basis vector e; = (1,0)7 and a > 0. In the case a > 0 we shall
choose the initial value ¢y of the time variable such that ¢(0) = (0,3)7 is collinear with ey, and
B=0.

Case a8 = 0: In this case the adjoint variable 1 evolves in a 1-dimensional linear subspace
of R2. Hence also u,y,z have to evolve in this subspace, and the problem reduces to the well-
known 1-dimensional time-optimal control problem with acceleration bounded by 1, which is given
by (10) with all variables considered as scalars.

In this case the adjoint variable ¢ is a scalar constant. Let us shift the time variable such that the
final time T is zero. Then the adjoint variable ¢ has terminal value ¥(T) =¥ (0) =0 € {—1,+1}
and is given by 1 (t) = o — ¢t. The optimal control u is piece-wise constant, given by

o ) L it o> ¢t
i(t) = { —1, if o< ¢t.
Equivalently, with ¢~> = o¢ we get
R to, if 1> ¢t
t) = z
a(t) {—a, it 1< gt.
This yields

t ~
. B ot, if 1> ¢t,
y(t) = O/u(s) s = { —o(t—d ) +od7t, if 1<t

and further
2

¢ o,
o(t) = / Y)ds =1 . . ~ &22 ~
0 —o——+ 20071t — 7)) + o5 if 1< ot

it 1> ¢t,

The case 1 > qz~$t is hence possible only if x = J% = —#

point in the z,y plane we must have 1 < qgt. Hence the locus of the equation x + % = 0 separates
the z, y plane in two regions, where different values of the control must be optimal. The separating
curve consists of the two trajectories which arrive directly at the origin (see Fig. 1).

, in which case tg = oyg. For any other

In particular, for 1 < th we have

ﬁz—az—sgn(aco—l—@).
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Fig. 1. Optimal synthesis for the 1-dimensional time-optimal control problem. To the left of the curve
separating the two regions we have &« = +1 and ¢ = —1, to the right 4« = —1 and ¢ = 1. The
trajectories of the system switch to the opposite control when they arrive at the separating curve.

~ 2 ~ ~
Further, oyg = —to + 207!, oxg = —%0 + 20"y — ¢~2 and hence

-1 _ Y% _ i
o =— Uxo—f-?, to=—oyo—2 O'ZE()-FE.

2
For ty <t < —\/oxo + %0 we thus finally obtain

2 2 2 2
t
y(t) = —ot — 204/ owo + —y20, x(t) = ——02 —20\[ox0 + —y20t —x — —012/0

with o = sgn (a:o + %)
Case a > 0, B > 0: In this case ¥ (t) = (at,8)T. Since ||¢)(T)|| = 1, we must have 3 < 1 and
a?T? + 32 =1.
Introduce the scaled time variable 7 = ot and the scaled starting point 79 = aty and end-point
7 =aT. Then we get § = 1 — 72. Consequently, ||1(t)|]| = V72 + 1 — 72. The optimal control is
then given by
¢ (@)
ol /72452

Since the system is autonomous, the Pontryagin function (11) is constant along the trajectory,
and by the transversality condition (12) we get the energy integral H = —1 — ayy + /72 + 2 = 0.

Hence
NEw:- "

o

(13)

U=

Y1 =

For the other component of y(t) we get the solution

t T
B B ds B - _
w= | Gt [ g~ e (g -] 09

. 7_— o . 7_— o —
Here we used that arsinh 5= arsinh T = artanh 7.
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Integrating further, we obtain for the function z(t) = [ y(s)ds = [T y(s/a) % that

1 52 T T 1
= — 2 2 —_— 1 - - 2 T —T
x1 20427—\/7- + 5% + 507 arsmhﬁ 2 o2 (8% artanh 7 — 7),
5 ﬁ ﬁ

T9 = pT arsinh — — 21 /72 ¢ f? — — artanh 7 —|—

a? B

Let us compute the elements of the Gramian. After insertion into the scalar products and
simplification we get

1 2
af|z|® = 17'4 + (ﬁQ artanh 27 + i + 1) T — (ﬁQ artanh 7 + 7_') T

1
+ 1 (4/34 + 382 + 1 + p*artanh 27 — 2827 artanh 7")

1
x« — 72 /7T2 + B2 + 3 (352 artanhi‘—l—i‘) /72 + B2 — 282/ 72 4 32

2
23%72 artanh 7 arsinh % + (%7 arsinh T_ % (52 artanh 7 — 7") arsinh %

g
2 4

* — %T\/marsinh % + 527‘2 arsinhQ% + % arsinh2%> (16)

1 2
oz, y) = 57’ + (ﬂQartanh T—FBQ —i—l) g \/TQ—FﬂQarsth
L NS @ 3 e BT L 47
+§<ﬂ artanhT—i-T) T+ 0 —5TVT + 5 +7arsth—§</B artanh7’+7-)

x + ,327' arsinh 2% — 2527' artanh 7 arsinh %, (17)

x?||y||? = 72— 24/72 4+ B2 + 52 arsinhQ% —24% artanh 7 arsinh % + (ﬂ2 artanh 27 + 5% + 1) . (18)

2.1. Computation of the Parameters o, T, Ty

In order to compute the time-optimal trajectory for a given initial value of the Gramian

( w0l (w0, y0)
(

5" |, we have to invert the above dependence to obtain the values a, 7, 9.
z0,90)  llyoll
The dependence on « is algebraic. Multiplication of o by a constant A multiplies the Gramian
from the left and from the right by the diagonal matrix diag(A~2,A™1). In the cone S% of positive

semi-definite 2 x 2 matrices this action defines 1-dimensional orbits of radial type, each of which
intersects every affine compact non-zero section of the cone S_% in exactly one point. The orbit

2
itself then depends only on the parameters 7y, 7. It can be represented, e.g., by the two ratios HzSH4 ,
(z0,%0)
llwoll®

The dependence of the orbit on the parameters cannot be inverted in closed form. In order to
shed light on it, let us compute the limit when the parameters 79,7 tend to the boundary of their
domain of definition. Recall that —1 <7 <1, 1p < 7.

In the limit 7 — 7 we obtain arsinh %‘J — arsinh% = artanh 7, \/7¢ + 2 — 1. Inserting with
T =19 into (16), (17), (18) we obtain that the Gramian of the initial point (z¢,yo) tends to 0.
However, if at the same time a — 0 such that the ratio %?TTO =T — ty equals 1, then the control
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The limit is different from (i, —%) only for 7 — 1, 79 < 0 and is located on a parabola.

Fig. 2. Limits of the ratios

when 7, 7¢ tend to the boundary of their domain of definition.

tends to the constant function @& = (7, 8)” and the trajectory tends to a segment of a parabola given
by z(t) = 5(t — T)*a, y(t) = (t — T)a. Hence zg — 5(7,8)", yo — —(7, )", and the Gramian
1 1
zo

i -5 . llzol2 1 (®o.y0) _1
tends to (_% 1 ) In particular, o ll® - D Tyol® - —35-

In the limit 7 — +1 we get 8 — 0, Barsinh 3 — 0, fartanh 7 — 0, VT2 + 32 = |7|. Inserting
into (16), (17), (18) we get

1 1 1
oz|? — 174 + 72+ 1 27| + 5’7_'7'|7‘| — 7T,

o*{e,) = 517l = 1) (7]~ 2) +7)

a?[lyll* — (7] - 1)%.

For 7 — —1 we have 7 < —1 and |7| = —7. Setting o = —1 — 7y such that again T — ¢ty — 1,
1 1
this yields ol {zo, uo) — | %4 2| and the ratios ﬁ”mOHQ (zo.0) tond to the same limits
{zo,y0) ol -1 501> Tiyol
%, —% as above.

For 7 — 1 we obtain

) 1 (ro(|mo| = 2) + 1)° 1 —|mol) (ro(lrol —=2) +1)
( ol <xo,yo>> N > .
(zo,y0)  llyol? 1 (1 —mo]) (ro(J0] —2) +1) (1 —|mo))?
2 s o?
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llzol|> 1 (ro(|r0|=2)+D? (zowo) _, _ 1 7o(|70|=2)+1 imi 1
and Jygft = 4 (-t 0 Teol® "2 T-Tnlia-Twp- 1 70 > 0, then these limits are again equal
11 ((1+7)°=2)" (147)2-2 ol (i <mo,yo>)2
to 7, —5. For 79 < 0 they equal 1(1+m0)%  2[1+70|(1+70)° and limz_,; ol — (hmT—>1 Twol? ) -

(x0,y0)

Tyol® rises monotonely from —% to +oo. For 79 € (—1,0] it

For 7 =1, 19 € (—o0,—1) the ratio

2
rises monotonely from —oo to —%. The boundary values of the ratios Hx_o\u’ ﬁ;oﬁ‘?

) voll
Fig. 2.
Finally, if 79 — —o0, then the Gramian grows unbounded. However, if we simultaneously let o —

2
T Zo,
H OH < 0 yo>>

(zo,y0) llwoll

are depicted on

+o0 such that —¢ — 1, then the leading terms in 79 dominate and again (

Hence if the parameters 7, 79 circumvent the boundary of their domain of definition, the pair
[zl (zo.y0)
(o™ Tao?
interval (7,79) € {1} x R__ the ratio pair tends to the point (},—3). For 7 € (—1,+1), 79 < 7 the

pair takes values right of the parabola.

) moves along the parabola on Fig. 2, including the infinitely far point. Except the

The values of «a, 7,79 producing a given Gramian of g,y can then be obtained as follows.
[zoll®  {zo0.y0)
7 o]l ol i ) . o .
done, e.g., by tracing the level lines of the ratios as a function of 7,7y, finding their intersection,

and refining the values with the Newton method. In a final step determine «, e.g., from (18).

Compute the ratios Determine the values of 7y, 7 yielding these ratios. This can be

3. UPPER BOUND ON THE OBJECTIVE VALUE

In this section we compute the objective value of problem (5) on the time-optimal trajectory
computed in Section 2. We again consider the two cases from the previous section.

Case o > 0, B > 0: The objective value of the time-optimal trajectory for the original cost
function is given by

7

T T
1 1 1
> [l ds =5 [ et/ = = [ atlelar
to 70 70

Integrating expression (16) with respect to 7 we get

5

1 /71 1
;_0 t3 <%ﬁ2 + % artanh *7 + 1) - 3 (ﬁQ artanh 7 + 7") 72
1
+ 36 (954 artanh 27 — 18327 artanh 7 4+ 568* + 2782 + 9) T

- % (3ﬂ27’ —5p8% artanhv’-) /7124 B2 — 11527'@
+ % (13ﬁ2 artanh 7 + 37") TQW — %‘3\/@
2

534 T 2 T T 287 T
— i arsinh — — ﬁ— (/62 artanh 7 — %) rarsinh — + —72 arsinh — — iv'?’ artanh 7 arsinh —

8 g2 g2 g3 B
5 4 13 2 4 2
- %\/7‘2 + 32 arsinh% - 15 72\/72 + 2 arsinh% + %7‘ arsinh2% + %7‘3 arsinhQ%.

For 7 = 7 this expression evaluates to

1 4 2 - 4 _
Togg (102451 1636 + 54)7 — 6755" artanh 7).
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Hence the objective value —w’© of the time-optimal trajectory obeys

1/l 1
—a’wTO = ZL-(E) ~ 3 (%52 + B2 artanh 27 + 1) e+ Z(ﬁQ artanh 7 4 7)7¢

1
~ 3 —(96* artanh 27 + 275% + 564* — 18327 artanh 7 + 9) 7y

1
+— ((102454 — 16352 + 54)7 — 6758* artanh %)

2160
2
+ E(?)ﬂ?i- — 58* artanh 7 \/7-3+7/B2 + TO\/W

1
—%(136 artanh 7 + 37)734 /73 + B2 + 7‘0\/7'0 + 32

+ @ arsinh - + ﬁ—Q(/B artanh 7 — 7)7 arsinh -0 — B—Tg arsinh 2
16 B B 4 B
52 5ﬁ4 13437

37‘0 artanh 7 arsinh _ E 13 ——\/78 + B2 arsinh ~ E + WTO 78 + B2 arsinh%

4 2
L0270 [ 1270
— “rparsinh?—= — 73 arsinh 2=

8 g6 B’

Case aff = 0: For the 1-dimensional control problem we have

4 2
3 if t>— Jxo—l—%o,

x(t)?
WA 9
2 1 2 y2
5(2—%2\/03:0-1—5154-03:04—2) ; t<— Uxo—i-?o.

~ 2 ~
Hence with ¢! = —\/oxg + %0, o = sgn (aco + %), and tg = —oyg + 26! the objective value
of problem (1) on the time-optimal trajectory is given by

0 2 0

l/ 2dt = / ——2¢ Y4 o72) dt+ / ﬁdt

2 2 J 8
41

th 6T 5 aio  os 3 top~* | 677

=-29 —Zt 2~ _

1071 6 00 "+ o 5 T 12
_ Bss, ¢ oy ¢ Poud LU

60 2 6 40

ayox x0y3 oy 23 y2 5/2
0 0 0 0

_ 29 50 ) 19

2 3 15+60<x0+2> (19)

4. QUALITY OF APPROXIMATION

In this section we compare the objective value of the constructed sub-optimal solution with the
optimal objective value on those trajectories where the latter is known.

Let us first consider the 1-dimensional problem (1). Since both the optimal value (2) (multiplied
by —1) and the objective value (19) of the time-optimal trajectory satisfy the symmetry (4), the
relative gap between the two values depends only on the ratio Wy ‘ This gap is depicted on Fig. 3.

It varies between approximately 5.4 x 107> and 5.6 x 1072.
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Fig. 3. Relative gap between the value of objective (1) on the time-optimal trajectory and on the
optimal solution. The time-optimal trajectory switches control on the curve z = —%, whereas the
optimal trajectory switches control on the curve x = —fyly| with 8 & 0.4446. The figures on the
right and bottom are zooms of the upper left figure.

Since both the time-optimal problem (10) and problem (5) reduce to their 1-dimensional versions
Fig. 1 and (1) if the initial values of the vectors x,y are collinear, the same gap is achieved for the
2-dimensional problems for these initial values.

Let us now consider the self-similar trajectories found in [8]. First we compute the optimal
value of problem (5) on these trajectories. By virtue of (4) the Bellman function on the self-similar

trajectories satisfying (8) obeys

At)°
WQD(x(t)7 y(t)) = )\5 WZD(x(O)a y(O))
0
Differentiating with respect to ¢ and using w = 1|z(1)||? yields
o ((0),(0) = - 28 (20
2D Y - 540

We now consider the value of the objective on the time-optimal trajectory with the same initial
values (7). To this end we have to invert relations (16), (17), (18), i.e., determine the values of
«, T, T yielding these initial values.
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Fig. 4. Level curves of the ratios %, <ﬁ”;(f|/|%> corresponding to the self-similar trajectory in the

(7, 70) plane. The values of 7, 7y producing an initial point on this trajectory are given by the unique
intersection point of the curves (circle).

o] 2

llyoll*

Following the scheme outlined in Section 2, we first consider the level curves of the ratios

(z0,%0)
llyoll®

in the (7,7p) plane. From (7) we get the values

lzol> 2 (xo,y0) 2V6

ol 3" wol® 9

The corresponding level curves are depicted on Fig. 4. Refining the values obtained graphically by
a Newton method we get

T 0.97116420999, 79~ —2.17695799429.

Inserting into (18) and setting |yo||* = %3 by virtue of (7), we further obtain the value o~
4.13415835032); *.

Inserting the parameter values into the expression for the objective value on the time-optimal
trajectory, we obtain the sub-optimal cost ~ 0.0019779902706/\8. Compared with the optimal cost
(20) computed above, this yields a relative gap of ~ 6.8 x 1072,

Let us now compare the optimal control on the self-similar trajectory with the time-optimal
control on this trajectory. We choose the initial point which corresponds to the value A\g = 1, thus
the optimal trajectory needs unit time to arrive at the origin.

The time-optimal control is given by (13), where 7 runs from 7y to 7 and the time variable
correspondingly from 0 to 779 = o~ (7 — 75) ~ 0.7614904746. Note that the control evolves clock-
wise around the origin. Note also that the arrival time at the origin is smaller than the arrival time
T =1 for the optimal trajectory, because the time-optimal control minimizes precisely the arrival
time. On Fig. 5 the polar angle of the time-optimal control is depicted as a function of time.

By (9) the optimal control on the self-similar trajectory evolves according to the formula

@ = (cos @(t),sin p(t))T, @(t) = VBlog(T — t) + const,

where T'= Ay = 1 is the arrival time of the trajectory at the origin and the constant is the polar
angle of the control at the initial time instant ¢ = 0. In order to determine this constant we first
compute the initial value of y by formulas (14),(15). It amounts to

0) ~ 0.2878394861
Y= Z0.2895083711 )
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Fig. 5. Evolution of the polar angle of the optimal control and the time-optimal control for the same
initial point, located on a self-similar trajectory with arrival time 7" = 1. For ¢ — 1 the optimal
control angle tends to infinity.

As mentioned in Section 1, the optimal control is directed at an angle © — atan /5 relative to ¥,
leading to an initial control angle of ~ 3.5035658841. For t — T' = 1 the polar angle of the control
decreases logarithmically, and the control revolves an infinite number of times around the origin.
The evolution of the angle as a function of time is depicted on Fig. 5.

5. CONCLUSIONS

In this paper we considered two optimal control problems, which share the feasible set of tra-
jectories but have different objective values. While the time-optimal problem (10) can be solved
analytically, for problem (5), which exhibits a singular trajectory of second order, only a limited
number of optimal trajectories are known explicitly.

We describe the solution of the time-optimal control problem and use its solution to construct
an upper bound on the objective value of problem (5). Comparison of the value of the sub-optimal
(time-optimal) solution with the value of known optimal trajectories shows that the relative gap in
objective value ranges from several thousandth of a per cent to several per cent. The difference in
the polar angle of the two controls can, however, be quite substantial (up to 45 degrees).

The upper bound can be used to constrain the locus of the optimal trajectories of problem (5)
in extended phase space (i.e., jointly with the adjoint variables) and thus simplify the analysis
of the optimal synthesis of this problem. More concretely, it was shown in [9] that the Fuller
symmetry (3) implies that the Bellman function is given by w(z,y) = £((1,y) + 2(¢,z)), where
¢, are the adjoint variables to x,y. Hence an upper bound on the objective value at a given
point (z,y) implies a linear inequality on the optimal values of the adjoint variables at this point.

Numerical experiments show that the self-similar trajectory is repulsive in the factor (orbit) space
with respect to the action of the symmetry groups, while the trajectories corresponding to the 1D
analog (1) are attractive. A rigorous proof of this property and a qualitative description of the
complete optimal synthesis of the problem remain open and will be subject of future investigations.
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Abstract—We consider the all-pairs multicommodity network flow problem on a network with
capacitated edges. The usual treatment keeps track of a separate flow for each source-destination
pair on each edge; we rely on a more efficient formulation in which flows with the same des-
tination are aggregated, reducing the number of variables by a factor equal to the size of the
network. Problems with hundreds of nodes, with a total number of variables on the order of
a million, can be solved using standard generic interior-point methods on CPUs; we focus on
GPU-compatible algorithms that can solve such problems much faster, and in addition scale
to much larger problems, with up to a billion variables. Our method relies on the primal-dual
hybrid gradient algorithm, and exploits several specific features of the problem for efficient GPU
computation. Numerical experiments show that our primal-dual multicommodity network flow
method accelerates state-of-the-art generic commercial solvers by 100 to 1000 times, and scales
to problems that are much larger. We provide an open-source implementation of our method.

Keywords: multicommodity flows, primal-dual method, GPU-based optimizer
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1. MULTICOMMODITY NETWORK FLOW OPTIMIZATION
1.1. Multicommodity Network Flow Problem

Our formulation of the multicommodity network flow (MCF) problem, given below, follows [1].

Network. We consider a directed network with n nodes and m edges which is completely connected,
i.e., there is a directed path between each pair of nodes. Let A € R™*™ denote its incidence matrix,
i.e.,
+1 edge ¢ enters node ¢
Ay =< —1 edge ¢ leaves node ¢
0 otherwise.

Edge ¢ has a positive capacity ¢,. The total flow on edge ¢ (to be defined below) cannot exceed c.

Traffic matrix. We consider the all-pairs multicommodity flow setting, i.e., there is traffic that
originates at every node, destined for every other node. We characterize the traffic between all
source-destination pairs via the traffic matrix 7" € R™*". For any pair of distinct nodes i, j, Tj; > 0
is the traffic from (source) node j to (destination) node i. There is no traffic from a node to itself;
for mathematical convenience we define the diagonal traffic matrix entries as T;; = — Zj# T;j, the
negative of the total traffic with destination node i. With this definition of the diagonal entries,
we have T'1 = 0, where 1 is the vector with all entries one.

Network utility. Let u;; denote the strictly concave increasing utility function for traffic from
node j to node i, for j # i. We will assume utility functions are differentiable with domains R,

782
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the set of positive numbers. (The methods we describe are readily extended to nondifferentiable
utilities using subgradients instead of gradients.) The total utility, which we wish to maximize, is
Dit ui;(Ti;). For simplicity we take u;; = 0, so we can write the total utility as

U(T) = 3 ui(Ty)-

The domain of U is T = {T" | T;; > 0 for i # j}, i.e., the traffic matrix must have positive off-
diagonal entries.

Common examples of utility functions include the weighted log utility u(s) = wlogs, and the
weighted power utility u(s) = ws?, with v € (0,1), where w > 0 is the weight.
Destination-based flow matrix. Following [1] we aggregate all flows with the same destination,
considering it to be one commodity that is conserved at all nodes except the source and destination,
but can be split and combined. The commodity flows are given by the (destination-based) flow
matrix F' € R"*™ where Fj; > 0 denotes the flow on edge ¢ that is destined to node i. The edge
capacity constraint can be expressed as FT1 < ¢, where the inequality is elementwise. A similar
flow aggregation formulation, though source-based, was considered in [2].
Flow conservation. The flow destined for node i is conserved at all nodes j # i, including the
additional injection of traffic Tj; that originates at node j and is destined for node ¢. This means
that

Tij+ > AjpFu=0, i,j=1,....,n, j#i.
V4
At the destination node, all traffic exits and we have (using our definition of Tj;)

T+ Y AuFi =0, i=1,....n.
l

Combining these two, and using our specific definition of T;;, flow conservation can be compactly
written in matrix notation as
T+ FAT =0.

Multicommodity flow problem. In the MCF problem, we seek a flow matrix that maximizes to-
tal network utility, subject to the edge capacity and flow conservation constraints. This can be
expressed as the problem

maximize U(T) (1)
subject to FF >0, FT1<e¢, T+ FAT =0,

with variables F' and T', and implicit constraint 7' € 7. The problem data are the network topol-
ogy A, edge capacities ¢, and the traffic utility functions u;;.
We can eliminate the traffic matrix 7 using T = —F AT and state the MCF problem in terms

of the variable F' alone as
maximize U(—FAT) @)
subject to F >0, FT1<e¢,

with variable F, and implicit constraint —F AT € 7. The number of scalar variables in this problem
is nm. For future use, we define the feasible flow set as

F={F|F>0, F'1<¢}.

Existence and uniqueness of solution. First, let us show the MCF problem (1) is always feasible.
Consider a unit flow from each source to each destination, over the shortest path, i.e., the smallest
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number of edges, which exists since the graph is completely connected. We denote this flow matrix
as F°. Now take F = aF*?, where a = 1/ max,((F*71),/c;) > 0, so we have FT1 < c. Evidently
F' is feasible, and we have T;; = a > 0 for i # j, so T' = —F AT ¢ T. This shows that the problem
is always feasible. Let UP denote the corresponding objective function.

We can add the constraint U(T) > U®P to the problem, without changing the solution set. With

this addition, the feasible set is compact. It follows that the MCF problem (1) always has a
solution. The solution need not be unique. The optimal 7', however, is unique. We also note that
the argument above tells us that the implicit constraint 7' = —F AT € T is redundant.
Solving MCF. The multicommodity flow problem (2) is convex [3], and so can be efficiently solved
in principle. In [1] the authors use standard generic interior-point solvers such as commercial solver
MOSEK [4], together with CVXPY [5], to solve instances of the problem with tens of nodes, and
thousands of variables, in a few seconds on a CPU. In this paper, we introduce an algorithm for
solving the MCF problem that fully exploits GPUs. For small and medium size problems, our
method gives a substantial speedup over generic methods; in addition, it scales to much larger
problems that cannot be solved by generic methods.

1.2. Optimality Condition and Residual
Optimality condition. Let F denote the closure of the feasible set, including the implicit constraint
T=-FAT T, i
F=Fn{F|-FA" c (T},
where cl(7") denotes the closure of 7.
Then F is optimal for (2) if and only if F € F, —FAT € T, and

Tr(Z - F)'G >0

holds for all Z € F, where G = Vp(—U)(—FAT) (see, e.g., [3, §4.2.3]). We have G = U’A, where
U =y (—FAT) ).

Optimality condition via projection onto . For future use, we express the above optimality con-
dition in terms of projection of a matrix ) onto F. Let II denote Euclidean projection onto F.
Suppose Q € R™ ™, and set F =1II(Q), so F € F. Suppose in addition that —F A" € T, so that
G = Vr((~U)(—FAT) exists. Then F is also Euclidean projection of Q onto F. It follows that
Tr(Z — F)'G >0 for all Z ¢ F, so the optimality condition above holds, and F is optimal. Evi-
dently, it would hold if the weaker condition

G =~(F — Q) for some v >0

holds.

Summarizing: F is optimal if F' = II(Q) for some Q, —FAT € T, and G = v(F — Q) for some
7 = 0. The converse is also true: If F' is optimal then F = II(Q) for some @ with —F AT € T and
G =~(F — Q) for some v > 0. (Indeed, this holds with vy =1 and @ = F — G.) This optimality
condition is readily interpreted: It states that F' is a fixed point of a projected gradient step with
step size 7.
Optimality residual. For any @ € R™"™ with F' = II(Q), we define the (optimality) residual as

r(Q) = { minyo |G —y(F - Q) —FA" €T

%) otherwise,

where || - [|2 denotes the squared Frobenius norm of a matrix, i.e., the sum of squares of its
entries. When —F AT € T, the righthand side is a quadratic function of 7, so the minimum is
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easily expressed explicitly as

., TGT(F-Q)

1G] % s —FAT €T, F#Q, TrG"(F-Q) >0

r(Q) = IF' = Q% (3)
1G% ~FAT ¢ T, F=Qor TrGT(F-Q) <0
) otherwise.

Evidently F' = II(Q) is optimal if and only if 7(Q) = 0.

1.3. Related Work

Multicommodity network flow. Historically, different forms of MCF problems have been for-
mulated and studied. Starting from [6, 7] which studied a version with linear utility functions,
which can be formulated as a linear program, later works develop nonlinear convex program
formulations [8, 9] and (nonconvex) mixed integer program formulations [10-12] of MCF prob-
lems for different application purposes. These various forms of MCF have been widely used in
transportation management [13-15], energy and economic sectors [8, 10, 16], and network com-
munication [11, 17, 18]. [19] surveys over two hundred studies on MCF problems between 2000
and 2019. In this work, we focus on nonlinear convex formulation of MCF problems and develop
GPU-compatible algorithms for solving large problem instances. See [20] for a survey on nonlinear
convex MCF problems. MCF models have very recently been exploited to design multi-GPU com-
munication schedules for deep learning tasks [21, 22], but the underlying MCF problems are solved
with CPU-based solvers.

First-order methods for convex optimization. First-order methods such as gradient descent al-
gorithm, proximal point algorithm, primal-dual hybrid gradient algorithm, and their accelerated
versions have been exploited to tackle different forms of convex optimization problems. Compared
to second-order methods which exploit Hessian information, first-order methods are known for
their low computational complexity and are thus attractive for solving large-scale optimization
problems. Recently, primal-dual hybrid gradient algorithm has been explored for solving large
linear programs [23-25] and optimal transport problems [26] on GPUs. Other first-order methods
such as ADMM have been exploited for designing GPU-accelerated optimizers for optimal power
flow problems [27, 28].

GPU-accelerated network flow optimization. Specialized to GPU-based optimizers for network
flow optimization, [29] considers implementing a parallel routing algorithm on GPUs for SDN
networks, which solves the Lagrangian relaxation of a mixed integer linear program. [30] imple-
ments a genetic method on GPUs for solving an integer linear program formulation of the routing
problem. [31] considers a linear program formulation of multicommodity network flow problems
and constructs a deep learning model for generating new columns in delayed column generation
method. [32] implements an asynchronous push-relabel algorithm for single commodity maximum
network flow problem, which is CPU-GPU hybrid. [33] exploits exactly the same flow aggregation
formulation of MCF following [1] as we do and trains a neural network model for minimizing un-
constrained Lagrangian relaxation objective, and feeds the result as warm start to Gurobi [34] to
get the final answer. [35] integrates a source-based flow aggregation formulation of the multicom-
modity flow problem into solving the combined transportation model and exploits an accelerated
variant of proximal alternating predictor-corrector algorithm. The authors claim that the proposed
algorithm is GPU-friendly, but the numerical experiments are CPU-based, and involve small size
networks. [36] adopts a primal-dual gradient method for solving combined traffic models, which
however is not GPU-oriented.
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1.4. Contribution

Motivated by the recent advancement of GPU optimizers, in this work we seek to accelerate
large-scale nonlinear convex MCF problem solving with GPUs. Specifically, we adopt the MCF
problem formulation in [1] (also described above) which is compactly matrix-represented and re-
quires fewer optimization variables by exploiting flow aggregation. We show that this specific
problem formulation can be efficiently solved with first-order primal-dual hybrid gradient method
when run on GPUs.

To the best of our knowledge, our work is the first to tackle exactly solving convex MCF prob-
lems on GPUs. Classic works for solving such large-scale MCF problems usually adopt Lagrangian
relaxation for the coupling constraint and solve the resulting subproblems with smaller sizes in
parallel (see, e.g., [20]). In our work, we do not exploit any explicit problem decomposition strat-
egy and our algorithmic acceleration is mainly empirical and depends on highly-optimized CUDA
kernels for matrix operations. Moreover, we achieve problem size reduction via flow aggregation.
Therefore, our method has a simpler form that does not involve massive subproblem solving and
synchronizing, and is also exact.

1.5. Outline

We describe our algorithm in §2. Experimental results, using our PyTorch implementation, are
presented and discussed in §3; very similar results obtained with our JAX implementation are given
in Appendix B. We conclude our work in §4. The code, and all data needed to reproduce the results
reported in this paper, can be accessed at https://github.com/cvxgrp/pdmct.

2. PRIMAL-DUAL HYBRID GRADIENT
2.1. Primal-Dual Saddle Point Formulation

We first derive a primal-dual saddle point formulation of the MCF problem (1). Let Z denote
the indicator function of F, ie., Z(F) =0 for F € F and Z(F) = oo otherwise. We switch to
minimizing —U in (1) to obtain the equivalent problem

minimize —U(T)+ Z(F)

4
subject to T = —FAT, 4)

with variables T" and F. We introduce a dual variable Y € R"*" associated with the (matrix)
equality constraint. Then the Lagrangian is

L(T,F;Y)=-U(T)+Z(F) - TrYI(T + FAT)

(see [3, Chap. 5]). The Lagrangian £ is convex in the primal variables (T, F) and affine (and
therefore concave) in the dual variable Y. If (T, F;Y) is a saddle point of £, then (T, F) is a
solution to problem (4) (and F'is a solution to the MCF problem (2)); the converse also holds.

We can analytically minimize £ over T' to obtain the reduced Lagrangian
L(FY) = inf L(T, F;Y) = —(=U)"(Y) + Z(F) — Tr YTFAT, (5)

where U* is the conjugate function of U [3, §3.3]. This reduced Lagrangian is convex in the primal
variable F' and concave in the dual variable Y. If (F;Y) is a saddle point of L, then F is a solution
to the MCF problem (2) (see [37, § 1]). We observe that £ is convex-concave, with a bilinear
coupling term.
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2.2. Basic PDHG Method

The primal-dual hybrid gradient (PDHG) algorithm, as first introduced in [38] and later studied
in [39, 40], is a first-order method for finding a saddle point of a convex-concave function with
bilinear coupling term. The algorithm was extended to include over-relaxation in [40, §4.1], which
has been observed to improve convergence in practice. For (5), PDHG has the form

FF+1/2 — prox, (F*1/% 4 aY* A)
PR+l — g pk+1/2 _ pk—1/2

YR = ProXg(_)- (Y* — gEFHiAT) (6)
FRHLZ _ pfRe1/2 (1— p)Fk—1/2
Yk-‘rl — ka+1 + (1 o p)Yk

where prox (v) = argmin, (f(z)+ (1/2)|| — v||3) denotes the proximal operator of f [41], a, 3 > 0
are positive step sizes satisfying a8 < 1/||A||3, and p € (0,2) is the over-relaxation parameter.
Reasonable choices for the parameters are

a=p=1/Alz,  p=19.

(An upper bound on ||A|2 can be used in place of ||A]2.)

Convergence. In [40] it has been shown that when there exists a saddle point of L, (F*;Y*) con-
verges to a saddle point of L as k — oo. For MCF the existence of an optimal flow matrix and dual
variable is known, so F*¥ converges to an optimal flow matrix. It follows that r(F*¥~1/2 + aY*A) — 0
as k — oo. We note that —F AT € T only holds eventually.

2.8. Proximal Operators

Here we take a closer look at the two proximal operators appearing in PDHG.

First proximal operator. We note that prox,; appearing in the Fk+1/2 update of (6) is projection
onto F,

pI‘OXQI(F) = H(F)
Since the constraints that define F separate across the columns of F', we can compute II(F) by

projecting each column f; of F onto the scaled simplex Sy = {f | f > 0, 17 f < ¢,}. This projection
has the form

s, (fe) = (fe — )+,

where py is the optimal Lagrange multiplier and (a)y = max{a, 0}, which is applied elementwise
to a vector. The optimal py is the smallest nonnegative value for which (f; — /,Lgl)JTrl < ¢p. This is
readily found by a bisection algorithm; see §2.6.

Second proximal operator. The proximal operator appearing in the Ykl update step in (6) can
be decomposed entrywise, since 5(—U)* is a sum of functions of different variables. (The diagonal
entries —u;; are zero, so (—fu;;)* is the indicator function of {0}, and its proximal operator is the
zero function.) For each off-diagonal entry i # j we need to evaluate

proxﬁ(—uij)* (y) °

These one-dimensional proximal operators are readily computed in the general case. For the
weighted log utility u(s) = wlogs, we have

y — Vy*+4bw
5 :
AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025
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For the weighted power utility u(s) = ws?, proxg_,,«(y) is the unique negative number z for which
(=) +y(=2) T —crep =0,

where

1
01:L>0, @zﬁ(——l)(wy)liw > 0.
Y

2.4. Adaptive Step Sizes

In the basic PDHG algorithm (6), the step sizes o and (3 are fixed. It has been observed that
varying them adaptively as the algorithm runs can improve practical convergence substantially [23].
We describe our implementation of adaptive step sizes here.

We express the step sizes as

where 1 < 1/||Al]2 and w* > 0 gives the primal weight. With w* = 1 we obtain basic PDHG (6).
The primal weight w* is initialized as w® = 1 and adapted following [23, §3.3] as

k+1
AF

where ARFE = ||FE+H1/2 — k=172 AFFL — || YR+ — VE||p and 0 is a parameter fixed as 0.5 in
our implementation. The intuition behind the primal weight update (7) is to balance the primal
and dual residuals; see [23, §3.3] for details. In [23] the authors update w each restart. We do not
use restarts, and have found that updating w* every k24Pt iterations, when both A% > 107% and
A’{, > 10~° hold, works well in practice for MCF. In our experiments, we use k2Pt =100. We
can also stop adapting w”* after some number of iterations, keeping it constant in future iterations.
At least technically this implies that the convergence proof for constant w holds for the adaptive
algorithm.

A simple bound on || A||2. We can readily compute a simple upper bound on

HA||2 =V /\maX(AAT)a

where Apax denotes the maximum eigenvalue. We observe that AA”T is the Laplacian matrix
associated with the network, for which the well-known bound

Amax (AAT) < 2dpax

holds, where d.x is the largest node degree in the graph. (For completeness we derive this in
Appendix A.) Thus we can take

N =1/v2dmnax- (8)

2.5. Algorithm

We summarize our final algorithm, which we call PDMCF. We set 0 = 400, o’ = n/w’, and
B = nw, where 7 is given in (8) and w® = 1.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 8 2025
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Algorithm 2.1. PDMCF
given F~12 y0 parameter € > 0.
for k=0,1,...
1. Check stopping criterion. Quit and return F*~1/2 if r* < nme holds.
2. Basic PDHG updates (6).
Fk—l—l/Q — H(Fk—l/Q + O[kYkA)
Fk—l—l — 2Fk+1/2 . Fk_l/Q.
proxﬁk(_uij)*(Yi’]‘? — BR(FFIATY ) G #£1
0 j=1i.
Fht+1/2 ppk+1/2 +(1— p)Fk:—l/Q'
Yk:-l—l — pf/k’-i-l 4 (1 _ p)Yk
3. Adaptive step size updates (7) (if k is multiple of k24%P* and AIFFI, Agﬁ“ > 7).
6 1-6
Wkl — (A’;“/A]}’;H) (wk) .
aF = g fuht BRFL Z okt

k1
Th =

Initialization. We always take F~1/2 =0 and Y* =T —117. We can alternatively use a better
guess of F~Y2 and Y, for example in a warm start, when we have already solved a problem with
similar data. We illustrate more on this in §3.1.

Stopping criterion. Since F*+1/2 ig result of projection onto F, our optimality residual (3) has the

form
PRl r(Fk_l/Q 4 akYkA).

We consider the stopping criterion 7% < nme, i.e., the entrywise normalized residual 7*/nm is
smaller than a user-specified threshold e.

2.6. Implementation Details

Incidence matrix indexing. We only store the indices of the non-zero entries of A. Matrix multipli-
cation with A and A” can be efficiently computed by exploiting scatter and gather functions, which
are highly optimized CUDA kernels and are available in most major GPU computing languages.
Projection onto scaled simplex. To compute pp when ( fg)z]. > ¢y, we follow [42] and first sort f,
from largest entry to smallest entry to form f;. We then find the largest index ¢ such that
For = (Choi £ — ) /t) > 0. Finally we take pp = (35— f; — o)/t

Some recent work develops a more efficient method to compute the projection onto the simplex
set ([43, 44] for example); we adopt the simpler algorithm described above for implementation
simplicity.

3. EXPERIMENTS

We run all our experiments on a single H100 GPU with 80 Gb of memory supported by 26 virtual
CPU cores and 241 Gb of RAM. The results given below are for our PyTorch implementation;
similar results, reported in Appendix B, are obtained with our JAX implementation.

3.1. Examples

Data and parameters. We consider weighted log utilities of form w;;(T;;) = w;;log T;;. We take
log w;j to be uniform on [log0.3,log 3]. For network topology, we first create n two-dimensional
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data points &; € R?, each denoted by (&;z,&y) fori = 1,...,n. We take &, and &, uniform on [0, 1].
Then we add both edges (&;,&;) and (;,&;) when either &; is among the g-nearest neighbors of §;
or vice versa. For each edge ¢, we impose edge capacity ¢, where we take log ¢, to be uniform on
[log 0.5, log 5].

We use the stopping criterion threshold e = 0.01/(n(n — 1)) for small to medium size problems

and € = 0.03/(n(n — 1)) for large size problems. We compare to CPU-based commercial solver
MOSEK, with default settings. MOSEK is able to solve the problems with high accuracy; we have
checked that for all problem instances, the normalized utility differences between the results of
PDMCF and MOSEK are no more than around 0.01. The pairwise normalized (optimal) utilities
range between around 1 and 10, which means that PDMCF finds flows that are between 0.1%
and 1% suboptimal compared to the flows found by MOSEK.
Small to medium size problems. Table 1 shows runtime for both MOSEK and PDMCF required
to solve problem instances of various sizes. The column titled nm gives the number of scalar
optimization variables in the problem instance. We see that our implementation of PDMCF on a
GPU gives a speedup over MOSEK of 10 to 1000 times, with more significant speedup for larger
problem instances. We also report runtime for PDMCF when run on CPU, which is still quicker
than MOSEK but with a significantly lower speedup. Similar performance is also observed for our
JAX implementation, reported in Appendix B.

Table 1. Runtime table for small and medium size problems

problem sizes timing (s) . .
iterations
n q m nm | MOSEK PDMCF (CPU) PDMCF (GPU)

100 10 1178 1 x 105 5 1 0.5 490
200 10 2316 5 x 10° 23 2 0.7 690
300 10 3472 1 x 108 95 6 0.8 840
500 10 5738 3 x 108 340 18 1.1 950
500 20 11176 6 x 10° 1977 34 14 790
1000 10 11424 1 x 107 2889 1382 19.5 7220
1000 20 22286 2 x 107 16 765 349 5.1 1040

Large size problems. Table 2 shows runtime for several large problem instances. MOSEK fails to
solve all these problems due to memory limitations. PDMCEF handles all these problem instances,
with the largest one involving 10° variables.

Table 2. Runtime table for large size problems

problem sizes timing (s) ‘terations

n q m nm | MOSEK PDMCF (CPU) PDMCF (GPU)
3000 10 34424 1x 108 OOM 7056 96 4140
5000 10 57338 3 x 108 OOM 19152 395 3970
10000 10 114054 1 x 10° OOM 87490 1908 4380

Scaling. We scatter plot the runtime data for small and medium problem instances in Fig. 1. Here
we take 5 problem instances generated by iterating over random seeds {0, 1,2, 3,4} for the different
n,q values listed in Table 1. The x-axis represents optimization variable size nm and the y-axis
represents runtime in seconds. We plot on a log-log scale. The lines show the affine function fits
these data, with a slope around 1.5 for MOSEK and around 0.5 for PDMCEF.

Convergence plot. Figure 2 shows the convergence for three problem instances with variable sizes
10°,10%, and 10" with PDMCF, where the z-axis represents iteration numbers. Especially in the
initial iterations, we have infinite residual r* since —FA” & T. For those iterations, we plot the
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Fig. 1. Runtime plot for small and medium size problems.
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Fig. 2. Convergence plot for small and medium size problems.
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Fig. 3. Warm start plot for medium size problem.

fraction of nonpositive off-diagonal entries of T in blue. For feasible iterations, we plot the (finite)
residual, in red.

Warm start. In §2.5 we start with some simple initial F~/2 and Y°. We also test the performance
of PDMCF with warm starts. In Fig. 3 we present how runtime changes under different warm
starts. To form these warm starts, for some perturbation ratio v, we randomly perturb entries
of our utility weight matrix to derive w;; = (1 £ v)w;;, each with probability a half. We solve
the multicommodity network flow problem with perturbed utility weight @ with PDMCF until we
land at a feasible point (Ffas Yeas) gatisfying (—F*2AT),; > 0 for all distinct i,j. We record
the primal weight at this point as w. We then solve the desired multicommodity network flow
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problem with original utility weight w with F~1/2 = ffeas y0 — yfeas 55q ()0 = wfeas. We note
that setting w® = wf® is important for accelerated convergence, otherwise it usually requires a
similar number of iterations to converge as a cold start if we simply set w® = 1. In Fig. 3, we
take problem instance with n = 1000, ¢ = 10. z-axis stands for perturbation ratio v and y-axis
represents runtime in seconds. As can be observed, with perturbation ratio v = 10%, we harness
> 80% saving of runtime. Such savings keep decreasing to around 30% when v = 30%, which makes
sense given that larger perturbation indicates more different utility weights between the original
and perturbed problems, thus our warm start is expected to stay further from an optimal solution
to the original problem instance.

4. CONCLUSION

In this work, we present the PDMCF algorithm which accelerates solving multicommodity net-
work flow problems on GPUs. Our method starts with a destination-based formulation of multi-
commodity network flow problems which reduces optimization variable amount compared to classic
problem formulation. We then apply the PDHG algorithm to solve this destination-based problem
formulation. Empirical results verify that our algorithm is GPU-friendly and brings up to three
orders of magnitude of runtime acceleration compared to classic CPU-based commercial solvers.
Moreover, our algorithm is able to solve ten times larger problems than those that can be solved
by commercial CPU-based solvers.

APPENDIX A

Upper bound on A, (AAT). For a directed graph with incidence matrix A, d; = (AAT);; is the de-
gree of node ¢ and for ¢ # j, —(AAT),;j is the number of edges connecting node ¢ and node j, i.e., 2 if
both edges (i, ) and (j,7) exist. Note that Anax(AAT) = max),,—1 27 (AAT )z = max, - w.
We have

xT(AAT)J) = Z(AAT)“J)? + Z(AAT),;jaciacj
) i#]

i i#j

<D dix} + ) |(AAT)yjl(23 /2 + 27/2)
i i#]

= Z 2 (di + ) |(AAT);5)

J#i
%

< QdmaXxTac.

Therefore

/\max(AAT) — max M

< 2dpax-
) 2T X max

APPENDIX B

JAX results. The results shown in §3.1 are for our PyTorch implementation. Here we provide the
same results for our JAX implementation. Tables 3 and 4 show the runtimes on the same problem
instances as reported in Tables 1 and 2. We note that JAX’s just-in-time (JIT) compilation adds
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Table 3. Runtime table for small and medium size problems (JAX)

problem sizes timing (s) . .
iterations
n q m nm | MOSEK PDMCF (CPU) PDMCF (GPU)
100 10 1178 1 x 10° 5 12 5 490
200 10 2316 5 x 10° 23 57 6 690
300 10 3472 1 x 108 95 164 6 840
500 10 5738 3 x 106 340 548 7 950
500 20 11176 6 x 109 1977 890 8 790
1000 10 11424 1 x 107 2889 18 554 26 7150
1000 20 22286 2 x 107 16 765 5143 15 1040
Table 4. Runtime table for large size problems (JAX)
problem sizes timing (s) iterations
n q m nm | MOSEK PDMCF (CPU) PDMCF (GPU)
3000 10 34424 1 x 108 OOM 106 274 139 4140
5000 10 57338 3 x 108 OOM 382400 421 3970
10000 10 114054 1 x 10° OOM 1809517 2078 4380

runtime overhead for first-time function compilation and thus it does worse than its PyTorch
counterpart on small size problems. The runtimes of these two versions are close for medium and
large size problems, with JAX slightly slower.
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